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A) Summarize the work performed during the project period covered by this report:  

 Modeling for all projects and state P Index runs was completed.  Information was compiled. 

 Four papers were submitted to a special edition of JEQ. Abstracts for these manuscripts are 
provided below. 

 Three presentations were presented at the International Soil and Water Conservation 
conference during two sessions entirely focused on results from the southern CIG-P. 

 The southern group participated in writing the unifying document for this work that will be 
provided by the P Index Integration CIG lead by Andrew Sharpley. 

 

DATA BASES 

 This work was accomplished early so that the remaining work could be completed. 

MODELING 

 Monthly conference calls were held among the modelers throughout the project. 

 Work from University of Georgia, Mississippi State University, ARS-Kentucky, and NC State 
University provided comparisons of TBET, APEX, APLE and southern P Indices that will be 
published in a special edition of JEQ.  Abstracts to this information are provided below.  

 Information provided by Oklahoma State University for TBET and NC State University for 
Drainmod are provided as reports. 

  



Georgia (TBET) 

Evaluation of a Quantitative Phosphorus Transport Model for Potential Improvement of Southern 

Phosphorus Indices 

Thomas A. Forsberg, David E. Radcliffe, Carl H. Bolster, Aaron Mittelstet, Daniel E. Storm, and Deanna 

Osmond 

Abstract 

Due to a shortage of available phosphorus (P) loss data sets, simulated data from a quantitative 
P transport model could be used to evaluate a P Index. However, the model would need to accurately 
predict the P loss data sets from field experiments that are available. The objective of this study was to 
compare predictions from the Texas Best Management Evaluation Tool (TBET) against measured P loss 
data to determine whether the model could be used to improve P Indices in the Southern Region. Field-
scale measured P loss data from study sites in Arkansas, Georgia, and North Carolina were used to 
assess the accuracy of TBET for predicting field-scale loss of P. We found that event-based predictions 
using an uncalibrated model were generally poor. Calibration improved runoff predictions and produced 
scatter plot regression lines that had slopes near one and intercepts near zero. However, TBET 
predictions of runoff met the performance criteria (NSE ≥ 0.3, PBIAS ≤ 35%, and MAE ≤ 10 mm) in only 
one out of six comparisons: NC during calibration. Sediment predictions were imprecise and dissolved P 
predictions under-estimated measured losses. Total P predictions using the calibrated model were a 
matter of getting the right answer for the wrong reasons in Arkansas and Georgia: over-predicting 
sediment loss and under-predicting dissolved P loss resulted in reasonably good predictions of total P 
loss. We conclude that TBET cannot be used to improve southern P Indices, but a curve number 
approach could be incorporated into P Indices to improve runoff predictions. 

Mississippi (APEX) 

Evaluation of the APEX model to simulate runoff quality from agricultural fields in the southern region of 

the US  

J.J. Ramirez-Avila, D. Osmond, D. Radcliffe, C. Bolster, S.L. Ortega-Achury, A. Forsberg, A. Sharpley5 J.L. 

Oldham6  

Abstract 

The phosphorus (P) Index (PI) is the risk assessment tool approved in the NRCS 590 standard 
used to target critical source areas and practices to reduce P losses. A revision of the 590 standard, 
suggested using the Agricultural Policy/Environmental eXtender (APEX) model to assess the risk of 
nitrogen and P loss. We compared uncalibrated and calibrated APEX model predictions against 
measured water quality data from row crop fields in North Carolina and Mississippi, and pasture fields in 
Arkansas and Georgia. Model performance was evaluated using the Nash-Sutcliffe efficiency (NSE) and 
percent bias (PBIAS) with critical values of NSE ≥ 0.30 and absolute value of PBIAS < 0.35, 0.6, 0.7, and 
0.7 for runoff, sediment, dissolved P (DP) and total P (TP). Comparisons were made on an event basis 
and using long-term 25-yr simulations. Overall, both the uncalibrated and calibrated APEX models 
predicted runoff that met the performance criteria for both the event-based and long-term predictions 
at most sites. However, neither the uncalibrated nor the calibrated model could simulate sediment, DP, 
or TP losses. APEX tended to underpredict P losses from fields where manure was surface applied and 
this may have been due to the lack of a surface manure pool for P that was separate from the soil 



surface layer pool. The APEX model’s capability to predict P losses is limited and consequently, so is the 
potential for using APEX to refine or replace P Indices in the southern region. 
 

APLE 

Comparing an annual and daily time step model for predicting field-scale P loss 

Carl H. Bolster*, Adam Forsberg, Aaron Mittelstet, David E. Radcliffe, Daniel Storm, John Ramirez-Avila, 
and Deanna Osmond 

Abstract 

A diverse set of mathematical models are available for predicting phosphorus (P) losses from agricultural 
fields, ranging from simple empirically-based annual time step models to more complex process-based 
daily time-step models. In this study, we compare field-scale P loss predictions between the Annual P 
Loss Estimator (APLE), an empirically-based annual time-step model, and the Texas Best management 
practice Evaluation Tool (TBET), a process-based daily time step model based on the Soil and Water 
Assessment Tool (SWAT). We first compared predictions of field-scale P loss from both models using 
field and land management data collected from 11 research sites throughout the Southern US. We then 
compared predictions of P loss from both models with measured P loss data from these sites. We 

observed a strong and statistically significant (p) correlation in both dissolved (DP; ) and 

particulate (PP; ) P loss between the two models; though APLE generally predicted, on average, 
44% greater DP loss whereas TBET predicted, on average, 105% greater PP loss for the conditions 
simulated in our study. When we compared model predictions with measured P loss data, neither model 
consistently outperformed the other indicating that more complex models do not necessarily produce 
better predictions of field-scale P loss. Our results also highlight limitations with both models and the 
need for continued efforts to improve the accuracy of these two models. 

PHOSPHORUS INDEX 

Southern P Indices, Water Quality Data, and Modeling (APEX, APLE, and TBET) Results: A Comparison  

Osmond, D., C. Bolster, A. Sharpley, M. Cabrera, S. Feagley, A. Forsberg, C. Mitchell, R. Mylavarapu, J. L. 
Oldham, D. E. Radcliffe, J. J. Ramirez-Avila, D.E. Storm, F. Walker, and H. Zhang 
 

Abstract 

Phosphorus (P) Indices in the southern United States frequently produce different 
recommendations for similar conditions. We compared risk ratings from 12 southern states (Alabama, 
Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, 
Tennessee, and Texas) using data collected from benchmark sites in the South (Arkansas, Georgia, 
Mississippi, North Carolina, Oklahoma, and Texas).  Phosphorus-Index ratings were developed using 
both measured erosion losses from each benchmark site and RUSLE2 predictions; mostly, there was no 
difference in P-Index outcome.  The derived loss ratings were then compared to measured P loads at the 
benchmark sites by using equivalent USDA-NRCS P-Index ratings and three water quality models (Annual 
P Loss Estimator, APLE; Agricultural Policy/Environmental eXtender, APEX; and, Texas Best management 
practice Evaluation Tool, TBET).  Phosphorus Indices were finally compared against each other using 
USDA-NRCS loss ratings Model estimate correspondence with USDA-NRCS loss ratings was 61% (APEX), 



48% (APLE), and 52% (TBET) and overall P index correspondence was 55%.  Additive P Indices (Alabama 
and Texas) had the lowest USDA-NRCS loss rating correspondence (31%), while the multiplicative 
(Arkansas, Florida, Louisiana, Mississippi, South Carolina, and Tennessee) and component (Georgia, 
Kentucky, and North Carolina) Indices had similar USDA-NRCS loss rating correspondence, 60% and 64%, 
respectively.  A Kendall modified Tau analysis suggested that correlations between measured and 
calculated P-loss ratings were similar or better for most P Indices than the models.  

 

Oklahoma, Texas and Mississippi (TBET) 

Dan Storm, Oklahoma State University 

 

Texas Best Management Evaluation Tool 

 

The Texas Best management practice Evaluation Tool (TBET) (White et al., 2012) is based on a specially 

modified version of Soil and Water Assessment Tool (SWAT) 2009 (Arnold et al., 1998) a product of more 

than 35 years of model development by the United States Department of Agriculture Agricultural 

Research Service. The field-scale model is a vastly simplified Graphical User Interface, which utilizes 

numerous updates and local climate, soils, topography and management databases supporting the 

application throughout the south central United States. Required data for TBET simulations include crop 

system and management practices, soil type, field area, distance to stream and soil test phosphorus. 

 

Field Simulations 

 

TBET simulations were conducted for 10 fields in the states of Oklahoma, Texas and Mississippi (Table 

1).  A summary of the observed and TBET simulated runoff, erosion, dissolved and total phosphorus and 

select input variables are given in Table 1.  A series of calibrated and un-calibrated TBET simulations are 

given in Figures 1 through 4. 

 

Combined Field Simulations 

 

TBET simulations were conducted on 54 sites from Oklahoma and Texas Sites (White et al., 2012) 

(Figures 5 to 8). Validation simulations were grouped by land cover to investigate the effect of land 

cover.  The combined simulations containing all land covers on under predicted runoff.  The 

conventional tillage field performed better compared to the reduced and no- tillage field, with similar 

results for the grazed and hayed pastures.  For sediment, the combined, conventional and reduced 

tillage validations were similar, and no-till and ungrazed pasture were over predicted. 

 

The total and dissolved phosphorus validations for the combined simulations were acceptable.  For total 

phosphorus, the conventional tillage fields were acceptable, but the reduced tillage fields were under 

predicted and the pasture, no-till and native grass were over predicted. Similar results were found for 

dissolved phosphorus, with the conventional, reduced and no tillage simulations under predicted and 



the pastures over predicted.  Native grass simulations were inconclusive. In summary, improvements are 

need in the TBET dissolved phosphorus routines. 

 

Future Work 

 

As a follow up on this research, detailed daily validation of TBET separated by land use/land cover and 

Level I and III ecoregions will be conducted and published.  The study will include 11 fields across 

Oklahoma, Texas, Arkansas, Mississippi, Georgia and North Carolina (Figure 9). 

 

References 

 

Arnold, J.G., R. Srinivasan, R.S. Muttiah and J.R. Williams. 1998. Large area hydrologic model 

development and assessment part 1: Model development. J. Am. Water Res. Assoc., 34(1):73-89. 

 

White, M.J., R.D. Harmel, and R.L. Haney. 2012. Development and Validation of the Texas Best 

Management Practice Evaluation Tool (TBET). Journal of Soil and Water Conservation, 67(6):525-535. 
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Figure 1.  Observed vs un-calibrated TBET predicted runoff and sediment yield by state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Observed vs un-calibrated TBET predicted dissolved phosphorus (DP) and total phosphorus 

(TP) by state. 
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Figure 3.  Observed vs calibrated and un-calibrated TBET predicted dissolved phosphorus (DP) using a 

default and calibrated PHOSKD of 175 and 50, respectively, for Mississippi fields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Observed vs un-calibrated TBET predicted dissolved phosphorus (DP) for two Texas fields. 



 
Figure 5. Observed vs un-calibrated TBET predicted runoff for 54 sites in Oklahoma and Texas combined 

and by land cover. 
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Figure 6. Observed vs un-calibrated TBET predicted sediment yield for 54 sites in Oklahoma and Texas 

combined and by land cover. 
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Figure 7. Observed vs un-calibrated TBET predicted total phosphorus for 54 sites in Oklahoma and Texas 

combined and by land cover. 
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Figure 8. Observed vs un-calibrated TBET predicted total phosphorus for 54 sites in Oklahoma and Texas 

combined and by land cover. 
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Figure 9. Field locations for future detailed TBET validation study.



 

Table 1. Summary of observed and TBET simulated runoff, erosion, dissolved phosphorus (DRP) and total phosphorus (TP), and select input 
variables.  Highlighted yellow cells are annual. 
 

    Predicted       

State Field ID Year Precipitation Runoff Erosion 
STP 
M3 

Fertilizer 
P 

Applied 

Surface 
Manure 

P2O5 

Total 
Cow 
Days 

Observed 
TBET 

Predicted 

          DRP TP DRP TP 

   
in in t/ac ppm 

lbs 
P2O5/ac 

lbs 
p2o5/ac  

kg/ha kg/ha kg/ha kg/ha 

              
MS 1 1996 46.0 7.76 0.64 49 0 

  
0.17 0.48 0.02 0.42 

MS 1 1997 50.3 27.98 0.49 49 0 
  

0.19 1.36 0.02 1.09 
MS 1 1998 53.1 39.28 3.99 49 19 

  
0.67 4.81 0.16 2.20 

MS 1 1999 39.5 36.71 1.43 49 0 
  

0.37 1.82 0.08 2.57 
MS 2 1996 46.0 11.37 0.89 67 0 

  
0.31 1.60 0.15 1.72 

MS 2 1997 50.3 8.08 0.26 67 0 
  

0.30 1.70 0.07 1.25 
MS 2 1998 53.1 24.95 1.61 67 19 

  
1.13 3.96 0.33 2.92 

MS 2 1999 39.5 15.31 0.91 67 0 
  

0.67 1.68 0.23 2.42 
OK ChickashaC3 1973 39.6 8.80 4.80 20 60 

  
1.81 13.13 0.16 7.48 

OK ChickashaC3 1974 29.1 1.50 0.50 20 60 
  

0.63 2.83 0.02 0.85 
OK ChickashaC3 1975 35.9 3.20 1.35 20 60 

  
0.82 4.21 0.04 2.39 

OK ChickashaC3 1976 31.1 3.30 1.10 20 60 
  

1.11 6.61 0.02 1.89 
OK Eucha_5DemoNorth 2006 41.9 0.30 0.00 50 0 27 410 0.02 0.02 0.06 0.06 
OK Cyril 1980 23.7 0.50 0.04 35 25 

  
0.15 1.08 0.01 0.11 

OK Cyril 1981 30.3 0.10 0.06 35 25 
 

183 
  

0.00 0.13 
OK Cyril 1982 29.4 1.20 0.11 35 25 

 
183 

  
0.03 0.29 

OK Cyril 1983 35.3 2.10 2.57 35 25 
 

183 
  

0.09 4.41 
OK Cyril 1985 25.4 0.10 0.01 35 25 

 
183 

  
0.00 0.02 

OK Cyril 1984 39.9 3.70 0.69 35 25 
 

183 
  

0.09 1.41 
OK elreno 1977 26.2 1.30 0.04 15 0 0 183 

 
0.28 0.02 0.11 

OK elreno 1978 24.6 0.30 0.01 15 0 0 183 
  

0.00 0.02 
OK elreno 1979 30.0 2.20 0.06 15 0 0 183 

  
0.04 0.17 



OK elreno 1980 24.6 1.80 0.04 15 0 0 183 
  

0.03 0.12 
OK elreno 1981 33.9 0.60 0.01 15 0 0 183 

  
0.01 0.03 

OK elreno 1982 37.9 9.00 0.23 15 0 0 183 
  

0.16 0.69 
OK elreno 1983 41.9 6.40 0.19 15 0 0 183 

  
0.10 0.55 

OK elreno 1984 29.1 2.60 0.07 15 0 0 183 
  

0.04 0.21 
OK elreno 1985 33.4 5.00 0.13 15 0 0 183 

  
0.10 0.39 

OK elreno 1986 44.0 9.20 0.25 15 0 0 183 
  

0.15 0.74 
OK elreno 1987 40.6 5.30 0.14 15 0 0 183 

  
0.09 0.37 

OK elreno 1988 28.4 3.40 0.07 15 0 0 183 
  

0.07 0.24 
OK elreno 1989 38.7 6.60 0.18 15 0 0 183 

  
0.10 0.53 

OK elreno 1990 35.2 6.40 0.19 15 0 0 183 
  

0.12 0.54 
OK elreno 1991 35.8 3.40 0.11 15 0 0 183 

  
0.06 0.31 

OK elreno 1992 37.3 3.30 0.09 15 0 0 183 
  

0.06 0.21 
 
 
 
 



Table 1 (cont.). Summary of observed and TBET simulated runoff, erosion, dissolved phosphorus (DRP) and total phosphorus (TP), and select 
input variables.  Highlighted yellow cells are annual. 

    
                         

Predicted 
     

State Field ID Year 
Precipitati

on 
Runoff Erosion 

STP 
M3 

Fertilizer 
P Applied 

Surface 
Manure 

P2O5 

Tota
l 

Cow 
Day

s 

Observed 
TBET 

Predicted 

          DRP TP DRP TP 

   in in t/ac ppm 
lbs 

P2O5/ac 
lbs p2o5/ac  

kg/h
a 

kg/h
a 

kg/h
a 

kg/h
a 

              

TX 
Goosebra

nch 
1998 26.5 0.58 0.01 435 0 69 0 1.98 3.33 0.35 0.39 

TX 
Goosebra

nch 
1999 22.9 0.00 0.00 435 0 69 0 0.98 1.15 0.01 0.01 

TX 
Goosebra

nch 
2000 27.3 0.00 0.00 435 0 69 0 0.83 0.96 0.00 0.00 

TX 
Goosebra

nch 
2001 28.7 0.00 0.00 435 0 69 0 0.67 1.03 0.00 0.00 

TX Melde 2005 21.4 1.40 0.10 34 0 40, 51 0 0.00 0.06 0.06 0.54 
TX Melde 2006 18.9 0.16 0.00 34 0 40, 51 0 0.00 0.03 0.00 0.02 
TX Melde 2007 37.9 7.70 0.51 34 0 41, 51 0 0.22 4.10 0.22 2.67 
TX Melde 2008 14.3 0.02 0.00 34 0 40, 51 0 0.00 0.00 0.00 0.00 
TX Patton 2005 21.3 1.80 0.00 10 0 33 13 0.00 0.08 0.10 0.10 
TX Patton 2006 19.7 0.50 0.00 10 0 33 13 0.02 0.09 0.03 0.03 
TX Patton 2007 46.7 12.60 0.04 10 0 33 13 0.76 1.77 0.44 0.47 
TX Patton 2008 19.4 0.40 0.00 10 0 33 13 0.04 0.10 0.08 0.08 
TX Riesel 2001 35.3 7.20 0.13 51 0 30 0 0.24 10.61 0.27 0.85 
TX Riesel 2002 36.8 5.60 0.05 51 0 30 0 0.19 1.90 0.24 0.40 
TX Riesel 2003 44.9 8.00 0.11 51 0 30 0 0.25 1.20 0.29 0.66 
TX Riesel 2004 35.3 6.40 0.06 51 0 30 0 0.24 2.30 0.28 0.52 
TX Riesel 2005 38.7 4.90 0.06 51 0 30 0 0.13 1.30 0.13 0.36 



TX Riesel 2006 64.5 29.34 0.36 51 0 30 0 0.77 3.40 0.86 1.85 
TX Riesel 2007 28.8 0.62 0.00 51 0 30 0 0.01 0.80 0.02 0.04 

 

 

  



DRAINMOD 

Progress Report on the  

Development and testing of a version of DRAINMOD for simulating P dynamics in artificially drained high 

water table soils 

By: Mohamed A. Youssef 

Date: May 15, 2016 

The funds obtained from the multi-institution CIG grant, entitled “Refine and Regionalize Southern 
Phosphorous Assessment Tools Based on Validation and State Priorities” has been primarily used to 
support a PhD student to work on this project with the overall goal of developing DRAINMOD-P model, 
an integrated, process-based field-scale model for simulating P cycling and dynamics in drained 
agricultural fields. This goal is being achieved by modeling key hydrological and biochemical processes 
that affect fate and transport of P in drained agricultural fields. Specific objectives of the research 
project include: 

1. Enhancing the hydrology component of DRAINMOD to model water flow and transport in soil 

macropores. 

2. Developing a P component for DRAINMOD to simulate P-cycling and dynamics. 

3. Testing the developed model using field measured data from two sites, one in North Carolina 

and one in Ohio. 

4. Applying the model to assess the long term effects of Best Management Practices (BMPs) on P 

losses from drained croplands. 

What has been achieved since the beginning of the project? 

1. The graduate student, Manal Askar, has completed two years of course work. 

2. The advisory committee has been formed (Chair: Mohamed Youssef; Members: George 

Chescheir, Dean Hesterberg, Wayne Skaggs) 

3. An extensive review of the literature was conducted and different modeling approaches were 

compared. 

4. A conceptual model (Figure 1) of DRAINMOD-P was developed. 

5. The code is currently being written in FORTRAN programing language and is expected to be 

completed by the end of 2016. 

 

DESCRIPTION OF DRAINMOD-P MODEL 

Adding a Macropore flow Component to DRAINMOD 

The first step for adequately modeling P dynamics and predicting P loss using DRAINMOD is to modify 
DRAINMOD’s hydrology component to simulate macropore flow and transport. The approach selected 
for simulating macropore flow will adequately represent the phenomena while keeping the model 
relatively simple and easy to parameterize. An approach similar to that used in MACRO model (Larsbo et 



al., 2005) is selected for simulating preferential flow. Macropores and micropores are separate domains 
in MACRO, each characterized by a degree of saturation, hydraulic conductivity, and flux. MACRO uses a 
modified Kinematic Wave Equation (KWE) of the one presented by German and Beven (1985) to 
represent gravitational movement of macropore flow, 

𝜕𝜃𝑚𝑎

𝜕𝑡
=

𝜕𝐾𝑚𝑎

𝜕𝑧
± ∑ 𝑆𝑖                                                             (1) 

where, 𝜃𝑚𝑎 and 𝐾𝑚𝑎 are the macropore water content and hydraulic conductivity, respectively, 𝑆𝑖 is a 
source/sink term, and 𝑧 is depth. The Kinematic wave equation is similar to Richards equation assuming 

capillarity is negligible in macropores (i.e. 
𝜕𝜑

𝜕𝑧
 = 0, where 𝜑 is the soil water pressure head). Compared to 

models that use Richards equation for macropore flow, no water retention of the macropore domain is 
required and less parameters are needed for the KWE (Gerke, 2006). However, the equation accounts 
for vertical gravity flow only and capillarity is ignored. Therefore, upward flow during ET periods cannot 
be simulated. MACRO uses a threshold pressure head for defining the boundary between micropores 
and macropores. Therefore, in addition to total saturated water content (𝜃𝑠) and total saturated 
hydraulic conductivity (𝐾𝑠), the user must define a breakpoint pressure head (𝜑𝑏) which is used to 
partition total porosity into micro- and macroporosity, where 𝜑𝑏 falls within the range -6 to -10 cm 
(Jarvis and Larsbo, 2012). Corresponding water content (𝜃𝑏) and hydraulic conductivity (𝐾𝑏) at this point 
represent the saturated state of the soil matrix (Fig. 1).  

 

Figure 1 Modified van Genuchten soil water retention function used in MACRO (After Larsbo et al., 
2005) 

Macropore hydraulic conductivity is expressed as a power function of macropore water content (Larsbo 
et al., 2005) 

𝑞𝑚𝑎 = 𝐾𝑚𝑎 = 𝐾𝑠(𝑚𝑎)(𝑆𝑚𝑎)𝑛∗
= (𝐾𝑠 − 𝐾𝑏) (

𝜃𝑚𝑎

𝜃𝑠(𝑚𝑎)
)

𝑛∗

                               (2) 

Where, 𝑞𝑚𝑎 is water flow in macropores, 𝐾𝑚𝑎 is the macropore hydraulic conductivity, 𝐾𝑠(𝑚𝑎) is the 

saturated macropore conductivity, 𝑆𝑚𝑎 is the macropore degree of saturation, 𝜃𝑠(𝑚𝑎) is the saturated 

macropore water content (macroporosity) equals 𝜃𝑠-𝜃𝑏, 𝑛∗ is kinematic exponent reflecting macropore 



size distribution, connectivity, and tortuosity (usually set to 3), 𝐾𝑠 is the total saturated conductivity, 𝐾𝑏 
is the saturated soil matrix conductivity. An upper flux boundary condition is used such that rainfall rate 
greater than infiltration capacity is routed to macropores until saturation. Excess rainfall then generates 
overland flow. 

For lateral water flow, MACRO uses a first order equation (Eq. 3) for water transfer from macropores to 
matrix. Conversely, flow can occur instantaneously from matrix to macropores if matrix water content 
exceeded field capacity in any computational layer. The exchange is controlled by an ‘effective’ diffusion 
pathlength and driven by water content gradient 

𝑆𝑤 = (
𝐺𝑓𝐷𝑤𝛾𝑤

𝑑2
) (𝜃𝑏 − 𝜃𝑚𝑖)                                                        (3) 

Where, 𝐺𝑓 is geometry factor, 𝑑 is effective diffusion pathlength (accounts for size and shape of 

aggregates, density and distribution of biotic macropores, and macropores linings), 𝐷𝑤 is the effective 
water diffusivity,  𝜃𝑏 is the saturated water content in soil matrix, 𝜃𝑚𝑖 is matrix water content, and 𝛾𝑤 is 
scaling factor to match approximate and exact solutions.  

Parameters used for soil hydraulic properties can either be measured, obtained from literature, 
calibrated, or estimated. Parameters that are often uncertain and need calibration include saturated 
matrix conductivity (𝐾𝑏), effective diffusion pathlength (d), kinematic exponent (𝑛∗), and saturated 
macropore water content (macroporosity) (𝜃𝑠(𝑚𝑎)). For solute transport, the advection-dispersion 

equation that already exists in DRAINMOD N II model will be used to simulate reactive P transport in 
both soil matrix and macropores. 

Modeling Phosphorus transformations 

Most process-based P models represent P cycling with the multi-pool P model described by Jones et al. 
(1984) and Sharpley et al. (1984). P cycling subroutines of the EPIC model, which uses the same 
approach, will be modified and added to DRAINMOD. Our aim is to improve the P model by including 
non-linear P sorption isotherms for predicting dissolved P concentrations. Generally, organic P (OP) and 
inorganic P (IP) are partitioned into different pools according to the rate at which P flows from each 
pool.  

Inorganic P is divided into three different pools; labile, active, and stable mineral pools (Fig. 1). The 
labile pool is the readily available P while the stable pool represents the very slowly available P. It should 
be noted that all pools are defined for each soil layer. Rapid equilibrium (days to weeks) is assumed to 
exist between the labile pool and active pool (Sharpley et al., 1984). Size of labile P pool and active P 
pool are assumed to be in equilibrium and can be related using equation (4) 

𝑃𝑙𝑎𝑏𝑖𝑙𝑒 = 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 (
𝑃𝐴𝐼

1 − 𝑃𝐴𝐼
)                                                     (4) 

where, 𝑃𝐴𝐼 is the P availability index defined as the fraction of applied fertilizer (𝑃𝑓) that remains labile 

after six-month incubation with several wetting and drying cycles (Jones at al., 1984). PAI can be 
calculated using the method outlined by Sharpley et al. (1984) by estimating the slope of the linear 
relation between labile and added fertilizer P as shown in equation (5) 

𝑃𝐴𝐼 =
(𝑃𝑙𝑎𝑏𝑖𝑙𝑒,𝑓 − 𝑃𝑙𝑎𝑏𝑖𝑙𝑒,𝑖)

𝑃𝑓
                                                    (5) 

where 𝑃𝑙𝑎𝑏𝑖𝑙𝑒,𝑓and 𝑃𝑙𝑎𝑏𝑖𝑙𝑒,𝑖 are the labile P after and prior to fertilization.  

 



 

 

Carbon Cycle Modeled in DRAINMOD-N II 

 

Figure 1. Integrating P pools and flows for the proposed model with current biogeochemical processes 
simulated in DRAINMOD. The carbon cycle is adapted from (Youssef et al., 2005) where 
(MET=metabolic pool, STR-structural pool, ACT=active pool, PAS=passive pool, SLO=slow pool, 
MCR=microbial pool, LGN=lignin, CEL=cellulose, SURF=occurs on surface, SOIL=occurs below surface) 

 

For the interaction between both labile and active inorganic P, either Freundlich or Langmuir equations 
can be used for simulating nonlinear isotherms. The general form of Freundlich isotherm is 

𝑄 = 𝐾𝐹𝐶𝑏                                                                 (6)  

where, 𝑄, quantity of P sorbed (mg kg-1), 𝐶, P concentration in solution (mg L-1), 𝐾𝐹 (mg1-b Lb kg-1) and b 
(unitless), fitting parameter. An alternate approach is the Langmuir equation: 

 



𝑄 = 𝑄𝑚𝑎𝑥[𝐾𝐿𝐶/(1 + 𝐾𝐿𝐶)]                                              (7) 

where, 𝑄𝑚𝑎𝑥, maximum amount of P sorbed (mg kg-1), 𝐾𝐿, constant related to the binding energy of P (L 
mg-1). However, Langmuir equation has the advantage of specifying a theoretical maximum adsorption, 
Freundlich equation lean more to fit P isotherms compared to the Langmuir equation (Jonge et al., 2001, 
Zhao et al., 2007). Fitting coefficients can be calibrated, estimated from literature, or measured in lab. 

Slow equilibrium is assumed to exist between the active pool and slow pool (Sharpley et al., 1984). The 
size of the inorganic stable P pool is initialized to be four times the size of the inorganic active pool as 
suggested by Sharpley et al. (1984) according to unpublished data. For simplicity, linear isotherm can be 
used for the slow rate of P movement between active and stable P pools (equation 8) 

𝑅𝑎𝑠 = 𝐾𝑎𝑠(4 𝑃𝑎𝑐𝑡𝑖𝑣𝑒 − 𝑃𝑠𝑡𝑎𝑏𝑙𝑒)                                                       (8) 

where, 𝑅𝑎𝑠, is rate of P movement between active and stable P pools, 𝐾𝑎𝑠, rate constant. Values of 𝐾𝑎𝑠 
for calcareous and noncalcareous soils can be estimated from Cox et al. (1981) study. 

Organic P: Some P processes are closely linked to C dynamics in soil organic matter as C supply is 
essential for these processes to take place. Therefore, interaction between OP and IP forms during 
organic matter (OM) decomposition will be regulated by the C submodel that already exists in 
DRAINMOD. In consistence with soil organic matter, OP will be divided into three pools (active, slow, 
and passive), two above- and below-ground fresh pools (metabolic and structural), and a surface 
microbial pool (Youssef et al., 2005). The metabolic pool will have easily decomposable materials while 
structural pool will have more resistance to decomposition materials. Like plant residues, the organic 
portion of the animal manure added to soil surface will be incorporated to surface structural and 
metabolic pools, while the inorganic portion will be incorporated to the labile pool. If manure is applied 
at a specific soil depth, the organic portion will be added to the subsurface pools.  

The active organic pool represent fast decomposition rate matter with short turnover time, while the 
slow organic pool includes more biological resistance to decomposition matter with intermediate 
turnover time (Fig. 2). Passive pool will represent physically protected matter with the longest turn over 
time. Each pool is characterized by a certain rate of decomposition and C:N:P ratio (Youssef et al., 2005). 
Mineralization and immobilization of P will depend on the associated C:P ratio of the decomposing C 
source. In other words, mineralized organic C (OC) in the SOM will have a corresponding mineralized OP 
regulated by the C:P ratio. Mineralized or desorbed P will be added to the labile P pool, while, 
immobilized or adsorbed P will be subtracted from the labile P pool (Fig. 2).  

As previously mentioned, simulating particulate P transport is a complex process, particularly in the 
subsurface, and usually ignored by P models as it requires a representation of the colloids detachment 
and transport in soil and their interaction with contaminants. MACRO (Jarvis et al., 1999) and ICECREAM 
(Larsson et al., 2007) are of the few models capable of modeling colloid and particle subsurface 
transport and both use similar approaches. Approaches similar to the ones used in MACRO for 
simulating particle mobilization and transport are being considered when developing DRAINMOD-P. 
Particles detachment rate is described as a function of rainfall kinetic energy and readily available 
dispersible particles (Equation 9) 

𝐷 = 𝐾𝑑  𝐸 𝑅 𝑀𝑠                                                                   (9) 

where, 𝐷, rate of detachment (g m-2 h-1), 𝐾𝑑, soil detachability coefficient (g J-1), 𝐸, kinetic energy (J m-2 
mm-1), 𝑅, rainfall rate (mm h-1), 𝑀𝑠, available dispersible particles (g g-1 soil). Soil particle replenishment 
rate is calculated using  



𝑃 = 𝐾𝑟 (1 −
𝑀𝑠

𝑀𝑚𝑎𝑥
)                                                         (10) 

where, 𝑃, particle replenishment rate (g m-2 h-1), 𝐾𝑟, replenishment rate coefficient (g m-2 h-1), 𝑀𝑚𝑎𝑥, 
maximum available particles (g g-1 soil). Available particles at the surface can be computed using a the 
following mass balance equation 

𝑑𝐴𝑠

𝑑𝑡
= 𝑃 − 𝐷                                                                       (11) 

where 

𝐴𝑠 = 𝑀𝑠 𝛾𝑧𝑖                                                                          (12) 

where, 𝐴𝑠, available particles at surface (g m-2), 𝛾, soil dry bulk density (g m-3), 𝑧𝑖, soil depth affected by 
detachment (m). The model mainly focuses on colloids transport via macropores and assumes most 
colloids are trapped and filtered by micropores except in coarse sands and gravels (Jarvis et al., 1999). 
However, for simplicity we will assume PP travelling through soil matrix is trapped and neglected. P 
concentrations in water infiltrating macropores and micropores are assumed to be identical. For 
representing concentration of both DP and PP routed into macropores, the approach used in ICECREAM 
(Larsson et al., 2007)  can be used which assumes an instant and complete mixing of rainfall and water 
stored in a shallow surface layer 

𝐶𝐷𝑃,𝑚𝑎 =
𝑃𝑙𝑎𝑏𝑖𝑙𝑒,𝑥𝑑

𝑅 + (𝑥𝑑(𝜃𝑡𝑜𝑝 + 𝛾𝑡𝑜𝑝𝐾𝑑𝑤)
                                                 (13) 

where 

𝐾𝑑𝑤 = 100 + 250𝑐𝑐                                                              (14) 

in which, 𝐶𝐷𝑃,𝑚𝑎, concentration of DP in macropores, 𝑥𝑑, mixing depth (recommended 1mm), 𝑃𝑙𝑎𝑏𝑖𝑙𝑒,𝑥𝑑
, 

labile P stored in 𝑥𝑑, 𝜃𝑡𝑜𝑝, water content of top layer, 𝛾𝑡𝑜𝑝, dry bulk density of top layer (g m-3), 𝐾𝑑𝑤, 

sorption distribution coefficient (L Kg-1), 𝑐𝑐, clay fraction. The same mixing depth approach is used for 
calculating PP routed into macropores (𝐶𝑃𝑃,𝑚𝑎) 

𝐶𝑃𝑃,𝑚𝑎 =
𝐷

𝑅 + 𝑥𝑑𝜃𝑡𝑜𝑝
                                                          (15) 

The flux of suspended particles reaching subsurface drainage is then reduced to account for particles 
filtered (entrapped) in macropores using a filter coefficient  

𝑀𝑑 = 𝑞𝑚𝑎𝐶𝑃𝑃,𝑚𝑎𝑒(−𝑓𝑧𝑑)                                                     (16)  

in which, 𝑀𝑑, flux of suspended particles reaching drains (mm d-1), 𝑞𝑚𝑎, water flow through macropores 
(mm d-1), 𝑓, is a filter coefficient (m-1), 𝑧𝑑, depth to tile drains (m). Flux of PP transported (𝑀𝑑, mm d-1) 
can be estimated by summing a fraction (𝑓𝑀𝑑

) of all P pool such that  

𝑓𝑀𝑑
=

𝑀𝑑

𝑥𝑑  𝛾𝑡𝑜𝑝
                                                                 (17) 

Advection-dispersion equation is to be used to model DP transport in both matrix and macropores, 
while dispersion of PP in macropores is to be neglected.  

In addition to the previous approach, methods used in the EPIC model for simulating erosion and surface 
loss of P due to surface runoff will be considered as well. EPIC (Williams et al., 1984) uses the modified 



USLE equation developed by Wischmeier and Smith (1979) that takes into consideration both runoff and 
rainfall variables 

𝑌 = (0.646 𝐸𝐼 + 0.45 𝑄 𝑞𝑝
0.333)𝐾 𝐶𝑟𝑜𝑝 𝑃𝐸 𝑆                                     (18) 

where, 𝑌, sediment yield (t ha-1), 𝐸𝐼, rainfall energy factor, 𝑄, runoff volume (mm), 𝑞𝑝, peak runoff rate 

(mm h-1), 𝐾, soil erodibility factor, 𝐶𝑟𝑜𝑝, crop management factor, 𝑃𝐸, erosion control practice factor, 
𝑆, slope length and steepness factor. 𝐶𝑟𝑜𝑝 and 𝑆 can be computed using equations recommended by 
Williams et al. (1984). For simulating DP loss in surface runoff, EPIC uses equation (19) 

𝑌𝐷𝑃 = 0.01
𝐶𝑙𝑝,𝑡𝑜𝑝𝑄

𝑘𝑑
                                                               (19) 

where, 𝑌𝐷𝑃, dissolved P (Kg ha-1) lost in surface runoff (𝑄, 𝑚𝑚), 𝐶𝑙𝑝,𝑡𝑜𝑝, labile P concentration in top 

layer (g t-1), 𝑘𝑑, P concentration in sediment divided by that in water (m3 t-1) ( a value of 175 is used in 
EPIC). While for simulating PP transport via surface runoff, equation (20) is used 

𝑌𝑃𝑃 = 0.001 𝑌 𝐶𝑝,𝑡𝑜𝑝 𝐸𝑅                                                        (20) 

where, 𝑌𝑃𝑃, sediment attached P (Kg ha-1) lost in surface runoff, 𝐶𝑝,𝑡𝑜𝑝, P concentration in top layer (g t-

1), 𝐸𝑅, enrichment ratio which is estimated using the sediment concentration. 

The recently developed vegetation component of DRAINMOD will be modified to determine plant 
uptake of P, which will be simulated using a similar procedure of N uptake by Youssef et al. (2005). Plant 
P uptake will be controlled by the labile pool and availability of labile P in the root zone.  

  

  



B) Describe significant results, accomplishments, and lessons learned. Compare actual 
accomplishments to the project goals in your proposal:  
This work represents an important contribution to our understanding of agricultural water quality 

models, not just from the Southern CIG effort but also from the Heartland and Chesapeake efforts.  

Lessons learned are as follows: 

1. Water quality models often are adequate for describing hydrology but not sediment or P losses.  

Critically, southern P Indices were just as good as the more difficult to use water quality models.  

USDA-NRCS should not use these models for management decision making. 

2. NRCS 590 standard is not interpreted in all states similarly 

3. Even though southern P Indices do not produce the same ratings across all states for the same 

conditions, they are as robust (in some cases more robust) than the difficult and time consuming 

water quality models. 

4. Not unexpectedly, modeling work is very time-consuming and technically challenging, even 

running models without calibration and validation.  Currently modeled losses of P are dissimilar 

to measured losses, at least for the Georgia, Mississippi, and North Carolina sites. 

5. Without resources to develop water quality data states within each state and resources for 

university faculty and their colleagues (state agency and USDA-NRCS state personnel), there is 

little expectation for changes in P Indices. 

6. Most southern states rarely utilize P Indices.  Maybe it’s time to set soil test P thresholds to 

make the process simpler so that soil test P does not continue to build. 

C) Describe the work that you anticipate completing in the next six-month period: N/A 

 
D) Provide the following in accordance with the Environmental Quality Incentives Program (EQIP) and 

CIG grant agreement provisions:  

1. A listing of EQIP-eligible producers involved in the project, identified by name and social security 

number or taxpayer identification number; None. 

2. The dollar amount of any direct or indirect payment made to each individual producer or entity for 

any structural, vegetative, or management practices. Both biannual and cumulative payment amounts 

must be submitted. $0.0 

3. A self-certification statement indicating that each individual or entity receiving a direct or indirect 

payment for any structural, vegetative, or management practice through this grant is in compliance with 

the adjusted gross income (AGI) and highly-erodible lands and wetlands conservation (HEL/WC) 

compliance provisions of the Farm Bill. Not applicable. 


