CONSERVATION INNOVATION GRANTS

Final Report

Grantee Entity Name: North Carolina State University				
Project Title : Development, evaluation, and demonstration of simple tools for a nitrogen credit trading system involving drainage water management.				
Agreement number: 69-3A75-12-184				
Project Director: Dr. Mohamed A. Youssef				
Contact Information : Biological and Agricultural Engineering Department, NC State Univ., Campus Box 7625, Raleigh, NC 27695-7625.	Phone Number: 919-515-6717 E-Mail: Mohamed_youssef@ncsu.edu			
Project Start Date: 9/21/2012: Project End Date: 06/30	/2015			

Introduction

Agricultural drainage is necessary for crop production on about 25% of cropland in the United States. Improved drainage increases crop yields, but also increases nitrogen (N) loads that can have negative environmental impacts on waters receiving drainage outflows. Drainage Water Management (DWM), also referred to as controlled drainage or managed drainage, is a practice that can reduce N loads while maintaining or improving crop yields. It involves the use of drainage water control structures that are installed at drainage outlets to regulate drainage intensity and outflow according to farming needs. It works by reducing drainage outflow and promoting denitrification reaction to transform dissolved nitrate into dinitrogen gases. Effective management of the structures reduces the amount of water drained and the amount of N lost from the field. The costs of control structures and the time required to effectively manage the structures has limited the acceptance of DWM among growers. An incentive program based on nitrogen trading where farmers could get financial compensation for the effective operation of the drainage water control structure and reducing N loads will likely increase acceptance of DWM and protect the quality of receiving waters. A nitrogen trading program involving DWM will require a simple and accurate tool to calculate the amount of N loss reductions resulting from DWM. This tool will need to consider the many variables affecting N loading from a drained crop field. Also, the input data to this tool must be readily available and verifiable.

Objectives

The objectives of this CIG were to develop and assess a simple tool for quantifying the impacts of DWM on the reduction of drainage flow and N losses from subsurface drained cropland. This tool can be used with an N trading program involving DWM to estimate the annual N reductions resulted from implementing the practice to a specific farm.

Approach

The proposed design of the tool is a set of simple regression equations that can calculate annual reductions in drainage flow and associated N losses for a specific farm as a function of explanatory variables describing essential farm characteristics. The data set used to build the regression equations is generated by thousands of DRAINMOD and DRAINMOD-NII model simulations over representative ranges of soils, climatic conditions, drainage designs, and cropping practices typical for the region of interest. Two separate studies have been conducted: a) Eastern North Carolina; and b) U. S. Midwest. The Midwest includes many states spanning over several climate zones. The states that were chosen for the current analysis were Minnesota, Iowa, and Illinois due to their intensive agricultural presence, their need for water table management, and their spanning of all Midwestern climate zones.

Methods

Development of the Regression Equations

The following steps were followed to develop the regressions equations for the DWM tools for the four states.

- 1) Select locations that represent high crop intensity, different climate zones, and soil types.
- 2) Obtain climate data from National Climatic Data Center of the National Oceanic and Atmospheric Administration (NCDC-NOAA). Thirty years of historical data where obtained.
- 3) Obtain soil data from the Cooperative Soil Survey (MCSS, 2015) and convert to DRAINMOD format with using ROSETTA model (Schaap et al., 2001). Soil series were selected by indicators of poor drainage and crop appropriateness:
 - a) slope <1%;
 - b) depth of soil profile >1 m;
 - c) seasonal water table depth <18 inch,
 - d) a "poorly drained" soil classification by MCSS (2015).
- 4) Use DRAINMOD and DRAINMOD-N II simulations to determine annual drainage volume and annual N load for all combinations of

	Midwest	North Carolina
Location (Climate data for	19 counties	4 counties
location)		
Soil Series	more than 120	more than 30
Drain spacings	between 9 and 35 m	Between 15 and 55 m
Drain depths	between 70 and 145 cm	between 80 and 150 cm
Fertilizer applications	between 70 to 170 kg N/ha	between 70 and 260 kg N/ha
Surface storage (surface	1.5 cm, 2.5 cm, 4 cm	0.5 cm, 1.0 cm, 2.0 cm
drainage)		

Simulated scenarios of cropping system and drainage water management include:

Class 1- Continuous Corn under Controlled Drainage;

Class 2- Continuous Corn under Free Drainage;

Class 3- Corn-soybean (Midwest) or Corn-wheat-soybean (NC) rotation under Controlled Drainage;

Class 4- Corn-soybean (Midwest) or Corn-wheat-soybean (NC) rotation under Free Drainage.

- 5) Build regression equation for each scenario using the data sets generated by the DRAINMOD and DRAINMOD-N II simulations. SAS (PROC GLMSELECT)

 - a) $Y_d = \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n + \beta_{C1} X_{C1}$ is the generic equation i) The β s represent coefficients estimated by SAS and the Xs represent variables and their interactions to be used in the given scenario

Figure 1. Locations of counties used in the Midwest analyses shown with visual representation of climate divisions: NRCS DATA GATEWAY, 2014

Figure 2. Locations of counties used in the North Carolina analyses shown with visual representation of climate divisions: NRCS DATA GATEWAY, 2014

Figure 3. Cropland suitable for drainage water management in the U.S. Midwest. **GIS data sources:* http://datagateway.nrcs.usda.gov_**Cropland county-based tabulated data :* http://www.nrcs.usda.gov/

The explanatory variables (the inputs) required for the regression equations are listed in the following table.

Explanatory variables for regression equations predicting				
Annual Drainage	Annual Nitrogen Loads			
Drain spacing (cm)	Annual drainage either predicted by			
	DRAINMOD or by the drainage regression			
	equation			
Drain depth (cm)	Annual relative crop yield (%)			
Annual rainfall (cm)	Previous year's relative crop yield (%)			
Soil texture (% Sand, % Silt, % Clay)	Fertilizer application rate (Kg N/ha)			
Soil Organic Carbon Content (%)	Annual rainfall			
Surface storage (Level 1, Level 2, Level 3)	Previous year's rainfall			
	Soil Organic Carbon Content (%)			
	Ratio of rainfall in growing season to annual			
	rainfall (Midwest only)			

Testing of the Regression Equations

The developed regression equations were tested by comparing their predictions to the predictions of DRAINMOD and DRAINMOD-N II model simulations. A detailed description of the approach used for testing the regression equations is given in the manuscript attached to this report.

Results and Deliverables

- A) Development and Testing of the DRAINMOD-Based Tools:
- 1. The outcome of this project is a DRAINMOD-based tool for estimate the impact of drainage water management (DWM) on artificially drained crop lands located in the U.S. Midwest and Eastern North Carolina.
- 2. The tool comprises a set of regression equations estimating the performance of DWM in terms of reducing drainage flow and NO3-N losses without the need for using processes based models such as DRAINMOD and DRAINMOD-NII. The regression equations estimate the annual drainage and N loading for four scenarios combining two cropping systems (continuous corn and corn-soybean for US Midwest or corn-wheat-soybean for North Carolina) and two drainage system management: (conventional drainage and controlled drainage).
- 3. All regression models were developed using the GLMSelect procedure (PROC GLMSELECT) of SAS software (V 9.3, SAS Institute, Cary, NC). This procedure is suitable for models combining both continuous and categorical predictors (More details about the regression analysis and data manipulation are given in the attached manuscript).
- 4. All regression models require easy-to-obtain parameters that describe local site conditions, including: weather, soil type, drainage system, nutrient management, and crop yields. To use the developed tool, one must select the regression equation that represent the scenario and provide the required input data that represent the local farm conditions.
- 5. The regression model estimations of annual drainage flow and NO₃-N losses were highly correlated with DRAINMOD simulated values (Figure 4). For the Midwest, adjusted R-squared values were greater than 0.90 for flow and 0.82 for NO₃-N. For NC, adjusted R-squared values were greater than 0.91 for flow and 0.88 for NO₃-N.
- 6. The developed regression models were compared on a year-by-year basis to the calibrated DRAINMOD and DRAINMOD-NII models for local conditions of an experimental site in eastern NC over 25 years. A similar comparison was conducted for the U.S. Midwest region. The results indicated that the simple regression method provides an adequate alternative to the processes based DRAINMOD suite of models for estimating annual reductions in drainage rates and N mass losses resulting from implementation of DWM. The comparisons between the estimates of the regression models and the predictions of the process based models for a North Carolina farm are presented in the attached manuscript.
- However, precautions should be considered when using the regression models to estimate DWM
 performance under extreme weather conditions (very dry or very wet). Under these extreme conditions, the
 estimates of the regression models tend to considerably deviate from DRAINMOD/DRAINMOD-NII
 predictions.
- 8. A Master student and a post-doctoral associate worked on the project. The student is currently writing his thesis and is expected to complete all degree requirements by the end of Fall 2015.

Figure 4. Example output of diagnostic plots comparing DRAINMOD simulation values to the regression predicted values. (PROC REG, SAS procedure).

B) An Online Calculator for the Developed Tools:

An online calculator was designed to help producers and planners to easily apply the tool by simply inserting easy to define parameters describing local site conditions. Screen shots of the online calculator is presented below. This online calculator is primitive and requires significant improvement before it can be readily applied. More funds will be needed to further develop the online interface of the tool.

NC STATE UNIVERSITY						
DRAINMOD-Based Tool for Nitrogen Trading						
NCSU BAE Department						
Home Calculator Other Resourc	es Contact Us					
		Drainage Flo	DW .			
		SOIL PROPERTIE	S			
	% Sand Content	% Silt Content	% Clay Content			
		DRAINAGE DESIC	<u>SN</u>			
	Drain Spacing (m)	Drain D	lepth (cm)			
	Select	Surface Drainage				
		CLIMATE				
	Annual Percipitation (cm)					
	Annual Fereipitation (em)	MANAGEMENT				
	0.1.1	Crop Rotation				
	Select			·		

C) Publication and Presentations:

- Negm, L., Youssef, M., Skaggs, R., and Chescheir, G. DRAINMOD-based tools for assessing the impact of drainage water management (DWM) on annual drainage flow and Nitrate losses from cultivated drained soils in Eastern North Carolina. Submitted for The Journal of Agricultural Water Management.
- Negm, L.M., M.A. Youssef, R.W. Skaggs, and G.M. Chescheir, R. O. Evans. 2014. DRAINMOD-based tools for nitrogen credit trading systems involving drainage water management. Presented at ASABE Annual International Meeting, Montreal, Quebec, Canada, July 14-16, 2014.
- Brooks, F.N., L.M. Negm, M.A. Youssef, G.M. Chescheir, and R.W. Skaggs. 2015. Development, evaluation, and demonstration of simple tools for nitrogen credit trading system involving drainage water management. Poster Presentation, 2015 Conservation Innovation Grants Showcase, Greensboro, North Carolina, July 27, 2015.

Program (EQIP) and CIG grant agreement provisions:

1. A listing of EQIP-eligible producers involved in the project, identified by name and social security number or taxpayer identification number; **None**.

- 2. The dollar amount of any direct or indirect payment made to each individual producer or entity for any structural, vegetative, or management practices. Both biannual and cumulative payment amounts must be submitted. **\$0.0**
- **3.** A self-certification statement indicating that each individual or entity receiving a direct or indirect payment for any structural, vegetative, or management practice through this grant is in compliance with the adjusted gross income (AGI) and highly-erodible lands and wetlands conservation (HEL/WC) compliance provisions of the Farm Bill. **Not applicable.**

DRAINMOD-based tools for quantifying reductions in annual drainage flow and nitrate losses resulting from drainage water management on croplands in eastern North Carolina L.M. Negm ^{a*}, M.A. Youssef ^a, G.M. Chescheir ^a, R. W. Skaggs ^a

^a Biological and Agricultural Engineering Dept. North Carolina State University, USA, ^{*} Corresponding author. Tell: +19196074004, e-mail, <u>Lmnegm@ncsu.edu</u>

7 Abstract

4

5

6

8 Nitrogen (N) lechate of drained agriculture has continued to be pervasive in the nation's water resources. 9 Nitrogen credit exchange program is a trading market to facilitate pollutant reductions and protect the environment. 10 A simple tool suitable for eastern North Carolina (NC) was developed to quantify drainage flow and N mass 11 reductions resulting from drainage water management (DWM); an efficient and common conservation practice for 12 drained agricultural lands. The tool comprises a set of regression equations estimating the performance of DWM as 13 a function of local site conditions. DRAINMOD and DRAINMOD-NII simulations were conducted for a wide range 14 of soil types, weather conditions, and management practices for different locations in eastern North Carolina. 15 Simulation results were used with SAS 9.3 software to develop a set of regression equations to estimate DWM-16 caused reductions in annual drainage flow and corresponding NO₃-N losses for continuous corn (CC) and corn-17 wheat-soybean (CWS) cropping systems. The regression model estimations of annual drainage flow were highly 18 correlated with DRAINMOD simulated values with an adjusted coefficient of multiple determination (R^2_{adj}) equaled 19 to 0.91 or higher for different management tiers. Similarly, the regression model estimations of annual nitrate losses 20 achieved an R^{2}_{adi} of 0.88 or higher for all management tiers. The developed regression models were further 21 compared on a year-by-year basis to the calibrated DRAINMOD and DRAINMOD-NII for local conditions of an 22 experimental site in eastern NC over 25 years. Estimated annual drainage flow and NO₃-N losses were in good 23 agreement with corresponding values simulated by DRAINMOD-based models for CC and CWS under managed 24 and unmanaged drainage modes. In terms of DWM-induced annual reductions in drainage flow and N losses, 25 noticeable differences occurred in several years between predictions of DRAINMOD-NII and the regression models. 26 A comparison based on the 5-year moving average of DWM-induced reductions smoothed out the extreme year-to-27 year variations and indicated a very similar reduction trends provided by both methods. The results presented in this 28 case study indicated that the simple regression method provides an adequate alternative to the processes based 29 DRAINMOD suite of models for estimating annual reductions in drainage rates and N mass losses resulting from 30 implementation of DWM. Similar tools can be developed for other regions in the US and abroad credit trading 31 system involving DWM.

32

Keywords: DRAINMOD, DRAINMOD-NII, regression analysis, agricultural drainage, nitrogen trading,
 controlled drainage.

36 1. Introduction

37 Nitrogen (N) lechate from drained agricultural lands is a pervasive problem to the nation's water resources. The

38 excess of N fertilizer applied on corn fields of the US Midwest have been identified as the main contributor to

39 seasonal hypoxia in the northern Gulf of Mexico, the nation's largest and most productive fishery (Petrolia and

40 Gowda, 2006; Mitsch et al., 2001; Dinnes et al. 2002, Alexander et al., 2008). In the Atlantic coastal plain, excessive

41 levels of nutrients originated from drained agricultural fields have been identified as being a primary cause of

42 eutrophication in the lower Neuse River basin, Pamlico River estuary, and other waters in eastern North Carolina.

43 "The minimization of these N losses is desirable from an environmental standpoint, and a recent interest in

44 discounted reductions of agricultural N losses that might apply to a project downstream from an agricultural area has

45 resulted in the concept of N credits and associated N trading." (Delgado et al., 2008).

46 Controlled drainage (CD), also referred to as drainage water management (DWM), is a practice for reducing NO₃-N 47 losses via drainage water (Skaggs et al., 1994; Evans et al., 1995; Drury et al, 1996; Wesström et al., 2001; Zebarth 48 et al., 2009). Unlike conventional or free drainage (FD) characterized by open drain outlets throughout the year; 49 DWM employs a drainage water control structure at drain outlets to regulate drain flow according to the need for 50 drainage for field operations and crop growth. Previous field experiments that have conducted side-by-side 51 comparisons between managed and unmanaged drainage systems, documented reductions in annual drain flow and 52 N drainage loss resulting from DWM by 20% to 60% (Evans et al., 1995; Pitts et al., 2004; Fausey, 2005; Ayars et 53 al., 2006; Zebarth et al., 2009; Poole et al., 2013, Fang et al., 2012). Managed systems conserve more groundwater 54 and nutrients for plant uptake, especially during relatively dry growing seasons. Ghane et al. (2012) reported that the 55 DWM provided up to 3.3% greater yield compared to FD. A North Carolina study by Poole et al. (2013) indicated 56 that DWM achieved a 10% yield benefit for corn and soybean compared to FD. Drainage water management 57 however, had no significant effect on winter wheat yields due to the wet and cold environment although it is the 58 period when water quality benefits are mostly achieved. Therefore, in many locations where DWM can be 59 effectively applied to improve water quality, the relatively modest yield benefits of the practice are not sufficient to 60 increase nationwide adoption of the practice.

61 Water quality credit trading markets have recently been proposed in the U.S. offering an innovative approach to 62 achieve water quality objectives by controlling pollutant discharge from multiple sources; point and non-point (US 63 Environmental Protection Agency (USEPA), 2007). Through these markets, farmers or stakeholders get monetary 64 compensation based on their application of conservation practices that reduce N losses. Such an approach would be 65 exceptionally effective in promoting the large scale adoption and use of DWM for substantial environmental 66 benefits, as well as, bringing economic and social advantages to farmers and other stakeholders (Corrales et al.; 67 2013 and 2014). One of the largest water quality trading initiatives in the United States is The Great Miami River 68 Watershed Trading Program in Ohio. This program aims to accelerate reductions of phosphorus and nitrogen runoff 69 coming from fields receiving fertilizer and manure applications (Newburn and Woodward, 2012). According to 70 2014 trading program fact sheet released by Miami Conservancy District (MCD), more than 1.14 million credits 71 have been generated since the start of the project in early 2005. This is reported to translate to a 572 ton reduction in 72 nutrients discharge at a cost of 1.6 million dollars paid to agricultural producers for these credits.

73 An essential component of any water quality credit trading system involving DWM is a tool or a method for 74 determining annual N mass conserved by implementing DWM for a specific site and farm conditions (weather, soil, 75 drainage system, cropping system, and farming practices). Several computer simulation models have been 76 developed to predict nutrient losses from agricultural fields as affected by environmental conditions and 77 management practices. Over the past two decades, the DRAINMOD suite of models have been the models of choice 78 for simulating the hydrology and water quality in drained agricultural lands and have been extensively tested and 79 applied nationwide (e.g. Skaggs, 1982; Fouss et al., 1987; Workman and Skaggs, 1989; Cox et al., 1994; Wang et 80 al., 2006a; Ale et al., 2009; Youssef et al., 2006; David et al., 2009; Thorp et al., 2009; Luo et al., 2010; Ale et al., 81 2012). However, the use of such process-based models requires detailed input data and modeling experience which 82 limit their applicability for this purpose on a production scale. Developing simple decision support tools based on 83 process-based models that can be used by farmers and policy makers for the purpose of nutrient credit trading 84 markets has been well introduced (Delgado et al., 2008; Gross et al., 2008; Corrales et al., 2014; Saleh et al., 2011). 85 Skaggs et al. (2012a) demonstrated the potential of DRAINMOD-based models to formulate trading tools necessary 86 to assess the environmental benefits of installing DWM. Their proposed tool to estimate the effect of DWM on N 87 losses was presented by a simple linear function of annual subsurface drainage and long-term average flow weighted nitrogen concentration. However, the tool oversight temporal and spatial variations in environmental condition and management design which by its turn constrain the tool application to selected configuration of local site conditions. Further research and analysis, utilizing DRAINMOD-based models, can broaden the application of such tools; not only with water quality trading markets, but also with different water resources management studies and applications. For example, this tool can be extremely useful for management of watersheds dominated with drained agriculture.

94 **2.** Purpose and Scope:

The purpose of this project is to develop and evaluate a simple tool for quantifying the impacts of DWM on the reduction of drainage flow and NO₃-N losses from subsurface drained cropland in eastern North Carolina. This is the region where DWM was initiated in the mid 1980's for the purpose of reducing nutrient losses. This tool would be essential for any water quality credit trading system that involves the use of DWM. A similar approach will be used to develop tools for crop production systems on drained lands in the U.S. Midwest.

100 Three essential features should be considered in developing this tool: 1) accuracy, 2) simplicity, and 3) data 101 availability. Accuracy is at the core of any water quality credit trading system. Estimates of the credits that all 102 stakeholders can accept is a challenge for the non-point source component(s) of the system. Simplicity is essential 103 since the easy use of the tool will promote its adoption. Data availability is also important since the inputs to the tool 104 must be easy to obtain, standardize, and interpret. The conceptual design of the tool is a set of simple regression 105 equations that can assess annual reductions in drainage flow and associated NO₃-N losses for the region of interest 106 as a function of explanatory variables describing essential farm characteristics.

A representative dataset is required to build the proposed regression model and it should comprise a number of observations that consider the inclusion of critical explanatory variables, the temporal and/or spatial variations in each variable, and the response (dependent) variables under investigation (i.e., drainage flow and NO₃-N losses). It is practically impossible, however, to conduct a large enough number of field experiments to quantify DWM performance in response to the wide variation in soil, environmental conditions, and management practices for a given region. Instead, the DRAINMOD suite of models was used to simulate drainage flows and N leaching losses

Page | 12

113 for the wide range of climate year, soil type, drainage design, and farming practices of the NC Coastal plain for

both managed (DWM) and unmanaged (conventional drainage) scenarios.

115

116 **3.** Materials and methods

117 **3.1 Description of Study Area**

118 The North Carolina Coastal plain encompasses the easternmost counties of the state on a total area of 22,500 square 119 miles that lies between 33° 52' and 36° 33' north latitudes and between 75° and 78 30° west longitudes (Figure 1). 120 This region is characterized by low relief topography becoming more flat and swampy with a larger percentage of 121 the farms artificially drained towards the Atlantic coastal shoreline (Figure 2). The Coastal Plain is the major area 122 for agricultural crop production in the state. The most commonly grown crops in the area are corn, soybean, wheat, 123 and cotton. Installing drainage systems is a common practice by farmers to improve field trafficability and to 124 increase yields and profitability. On average, 40% of the agricultural fields in the area are artificially drained 125 (Pavelis, 1987; Jaynes and James, 2007). Summer temperatures are moderate with daytime high temperatures 126 averaged at 32 °C (90 °F), while winter temperatures are generally mild with 13.4 °C (56.2 °F) average daytime 127 temperatures in the month of January; the coldest month of the season (State Climate office of North Carolina, 128 2013). The annual precipitation in eastern North Carolina averages at 130 cm (51 inches); mostly in the form of 129 rainfall with no distinct dry or wet seasons within a year. Although NC coastal plain is classified as a humid-130 subtropical climate division, sever dry conditions occasionally occur resulting in substantial losses in the crop yields. 131

- 133
- 134

135 136 137

138

Figure 1. Map of North Carolina Coastal Plain and Climate Divisions of the Region. (GIS data source: <u>http://datagateway.nrcs.usda.gov/</u>)

- 140 Figure 2. A map illustrating the distribution of poorly drained soils in North Carolina. (GIS data source:
- 141 <u>http://datagateway.nrcs.usda.gov/)</u>
- 142

143 **3.2 DRAINMOD-based Models description:**

144 **DRAINMOD** (Skaggs, 1978) is a field-scale hydrologic model developed to simulate the hydrology of poorly 145 drained high water table soils. It conducts a one-dimensional soil water balance and predicts subsurface drainage, 146 surface runoff, infiltration, deep seepage, water table depth, and evapotranspiration as affected by changes in 147 weather conditions, crop cover, soil type, and drainage system design. The model applies the Green-Ampt equation 148 to estimate infiltration rates. Subsurface drainage is calculated using Hooghoudt's equation provided that water 149 table is below the surface, otherwise DRAINMOD uses Kirkham's equations when the surface is ponded. Surface 150 runoff is calculated when a user-defined depressional storage is filled as the difference between precipitation and 151 infiltration rates. Daily potential ET (PET) may be internally computed by the model using the Thornthwaite 152 method with monthly correction factors, or daily PET values may be determined independently outside the model 153 by any method (depending on weather data availability) and read in by the model as input data. The model has 154 been widely used to study the effects of drainage design and management on crop yields (e.g. Evans et al., 1991; 155 Wang et al., 2006a; Throp et al., 2009), erosion (e.g. Saleh, 1994), hydrology of high water table soils (e.g. Fouss et 156 al., 1987; Skaggs et al., 1981; Wang et al., 2006a; Throp et al., 2009; Luo et al., 2010), and wetland hydrology (e.g. 157 Skaggs et al., 2005; Jia and Luo, 2006).

158 **DRAINMOD-NII** (Youssef et al., 2005); a companion model to DRAINMOD, is a process-based model that 159 simulates Carbon (C) and N dynamics of drained cropland. DRAINMOD-NII simulates a detailed N cycle that 160 considers both mineral N (nitrate and ammoniacal forms) and organic N (ON) and their interaction as affected by C 161 cycling. The organic carbon (OC) dynamics is simulated using a C-cycle adapted from the CENTURY model 162 (Parton et al., 1993) by which the soil organic matter is divided into three pools (active, slow, and passive), two 163 above-and below-ground residue pools (metabolic and structural), and a surface microbial pool. The model performs 164 a numerical solution of the multiphase form of the one dimensional advection-dispersion-reaction equation using 165 the finite difference method to simulate N reactive transport in the soil column among three soil N pools: nitrate 166 (NO3)-N, ammoniacal (NH3/4)-N, and organic nitrogen (ON). Nitrogen processes simulated by the model include 167 atmospheric deposition, plant uptake, N fixation by legumes, mineralization/immobilization, nitrification, 168 denitrification, ammonia volatilization, and N losses via subsurface drainage, vertical seepage and surface runoff. 169 The model has been tested against field measurements and found to reliably predict N losses in drainage water for a

Page | 15

- 170 range of soils and locations across the U.S. (North Carolina: Youssef et al., 2006; Iowa: Thorp et al., 2009; Illinois:
- 171 David et al., 2009; Minnesota: Luo et al., 2010; Indiana: Ale et al., 2012). DRAINMOD-NII has also been tested in
- 172 Europe (Germany: Bechtold et al., 2007 and Sweden: Salazar et al., 2009).

173 **3.3 Data Collection:**

- 174 This section describes data collection and processing required to conduct DRAINMOD and DRAINMOD-NII
- 175 simulations of the hydrology and nitrogen dynamics for a wide range of possible scenarios of local site conditions.
- 176 DRAINMOD and DRAINMOD-NII simulations of annual drainage flow and annual N losses, respectively, were
- 177 used to extrapolate the results of field experiments to build the regression model since it is practically impossible to
- 178 conduct large enough number of experiments.

179 *3.3.1 Weather Data*

180 Historical weather data including hourly precipitations and daily maximum and minimum temperatures were 181 obtained from the North Carolina State Climate Office for different spatially distributed locations across the Coastal 182 Plain. These data covered up to 50 year time span of weather records. A simple analysis using a paired T-test 183 showed that annual rainfall patterns measured for stations within the same climate region were not significantly 184 different ($Pr \ge 0.16$). Therefore, and in order to avoid weather related factors overwhelming the influence of other 185 factors, weather station selections was limited to a few stations at different locations within the North (climate 186 region 8), Middle (climate region 7), and South (climate region 6) of the coastal plain (Figure 1). These weather 187 satiations coinciding with four counties; namely from north to south: Washington, Pitt, Duplin, and Pender counties. 188 Rainfall and temperature data were the only climatic data required since Potential evapotranspiration (PET) was 189 computed by the model using the temperature-based Thornthwaite method, with monthly correction factors. All 190 required input weather parameters were then processed to conform to the required DRAINMOD formatting.

191 *3.3.2 Soil Data*

192 The boundary of each of the counties listed above was considered as a buffer zone of the weather station each 193 encompasses; and the soils within each buffer zone and suitable for installing DWM systems were identified through 194 the National Cooperative Soil Survey (MCSS, 2010) and considered in the current analysis as distinct farm units.

195 This selection criterion granted the inclusion of more than 30 different soil series that collectively occupies at least 196 50% of the cropped land suitable for DWM in eastern North Carolina. For many of the selected soil series, soil 197 water characteristics data (soil water content versus pressure head) were available based on previous laboratory 198 measurements on soil cores using standard pressure plate methods. When measured soil water characteristics were 199 not available, soil physical properties were obtained from SSURGO soil data base (MCSS, 2010) and utilized in the 200 ROSETTA model (Schaap et al., 2001) to estimate van Genuchten water retention and unsaturated hydraulic 201 conductivity parameters. Estimated soil water characteristics were further processed using DRAINMOD 6.1 soil 202 utility program to estimate detailed soil related parameters including the volume drained and upward-flux 203 relationships and Green and Ampt infiltration parameters, all as a function of water table depth. Other 204 biogeochemical parameters required to simulate soil carbon and nitrogen dynamics were obtained from previous 205 DRAINMOD-NII applications for NC conditions (Youssef et al, 2006). Organic soils were excluded from this 206 analysis.

207 *3.3.3Crop management and drainage design:*

208 Two crop rotations were considered in the current study: continuous corn (CC) and corn-winter wheat-soybean 209 rotation (CWS). Crop planting and harvesting dates (Table 1) were defined according to usual operational dates 210 stated by the USDA National Agricultural Statistics Service (NASS) (USDA, 2010). Fertilizer management was set 211 based on recommended practices documented by the Agronomic Division of the North Carolina Department of 212 Agriculture & Consumer Services (NCDA&CS). We considered the reported varying rates of fertilizer application 213 to address all possible levels considered within the region. Fertilized crops; corn and wheat, received 30% of the 214 total amount at planting as a starter, with the remainder sidedressed at the recommended time after planting (Table 215 1).

Similarly, drainage system design parameters included in the simulations were set according to common practices in the region to represent realistic conditions for the proposed water management scenarios. Drain depth and spacing were allowed to vary within a range of values listed in the Field Drainage Guide for Coastal Plain Area of North Carolina (NC USDA SCS, 1976). Recommended drain spacings varied between 15 to 50 m placed at depths ranging from 90 to 150 cm. Surface drainage was considered at three different levels: good (depressional storage

Page | 17

- 221 (DS) ≤ 0.75 cm), fair (0.75 cm < DS ≤ 1.5 cm), and poor (DS ≥ 1.5 cm). Weir settings that define the control
- 222 structure depths under the DWM scenario were adjusted based on the recommendations of the NC Agricultural Cost
- 223 Share Program (ACSP).

Table 1: Summary of crop and fertilization management inputs for continuous corn and corn-wheat-soybean rotation at Eastern North Carolina

Cropping System	Crop	Planting	Harvest	Fertilizer application	
		Date	Date	DAP^1	Kg N/ha
Continuous Corn	Corn	15 - April	10 - September	0	40 - 66
				30	90 - 154
Corn-wheat-soybean	Corn	15 - April	10 - September	0	40 - 66
				30	90 - 154
	Wheat	10 - November	15 - June	0	27 - 51
				100	63 - 119
	Soybean	19 - June	10 - November	NA^2	NA

226 ¹ DAP= days after planting.

227 2 NA = not applicable

228

229

3.4 Set-up of hydrologic and water quality simulations:

230 DRAINMOD and DRAINMOD-NII simulations were conducted to predict annual drainage flow and associated 231 nitrogen losses for a wide range of environmental factors and management practices within each geographic region 232 considered. More than ten thousands of simulations were conducted. Input data at the county level were organized 233 in ASCII-formatted files that list benchmark soils and related soil input files, common drain depths and spacing, as 234 well as, range variations in fertilization rate. DRAINMOD and DRAINMOD-NII models were integrated through a 235 batch mode that allows for: 1) updating the models input files for different subsets of scenarios each representing a 236 unique combination of soil type, drainage design, and fertilizer rate, 2) executing DRAINMOD model to simulate 237 the hydrology and DRAINMOD-NII to continuously simulate nitrogen dynamics for both managed (DWM) and 238 unmanaged (conventional drainage) conditions for 20 to 50 years of available historical weather data and for each 239 proposed scenario, and 3) exporting simulation output to databases that comprise records of simulated annual 240 drainage flow and N losses (response variables) along with controlling input parameters (explanatory variables)

Page | 18

required to build the regression models. The identification of input variables that simulated drainage flow and nitrate losses are sensitive to, was based on previous experimental work and modeling studies (Kladivko et al, 2004 and

243 2005; Youssef et al., 2006; Negm et al., 2014; Skaggs et al., 2005, 2013).

The output databases were screened to identify inconsistencies, then merged and organized under two main categories: Database 1 comprised a total of 80,000 records for building a regression model to estimate drainage flow and, Database 2 comprised of more than 200,000 records to estimate N-losses. Database 2 included a greater number of records due to the inclusion of additional parameters that have significant impact on N-losses (e.g.: fertilization rate) while having no impact on predicted drainage flow. Note that estimated relative yield (predicted crop yield/ potential yield) predicted by DRAINMOD was considered among the explanatory factors affecting N-leaching losses since it is used by DRAINMOD-NII to simulate N-plant uptake.

251

3.5 General Linear Regression (GLR) Analysis:

General linear regression (GLR) is an approach by which a response (dependent) variable is related to multiple explanatory (predictor) variables through a linear relationship. However, building a regression model that comprises a relatively large number of predictor variables and based on large number of records is challenging and requires advanced computational techniques. At this phase of the project, we conducted statistical analysis through the SAS 9.3 (SAS Institute, Cary NC); a high performance computing software capable of handling large databases and performing robust regression analyses.

We chose the GlmSelect procedure "PROC GLMSELECT" to build the proposed regression model since it supports
 features that are not supported by other regression procedures implemented in SAS software. GlmSelect procedure

supports the "Class" statement that is required to distinguish categorical variables from continues variables.

261 Dissimilar to other generalized linear modeling procedures (e.g.: PROC GLM), the GlmSelect includes multiple

262 effect selection methods: forward, backward, stepwise, Least Angle Regression (LAR) (Efron et al., 2004), and

Least Absolute Shrinkage and Selection Operator (LASSO) regression (Tibshirani, 1996 and 2011). It allows the

264 modeler to specify different degrees of interaction among different variables. Another option that the GlmSelect

265 procedure supports, utilized herein, is the data partitioning statement that allows for subdividing the input datasets

into: a) training data used to build the regression model, b) validation data based on which the predicted error for the

267 model is estimated to avoid regression over-fitting, and c) testing data that played no role in model building and 268 could be used solely to assess the model predictive power. A typical partition fraction assigns 50% for the training 269 data set and 25% each for validation and testing data sets. This procedure was followed in the current study.

The regression analysis was initiated by including all candidate explanatory variables (Table 2) that affect a particular constituent (i.e.; annual drainage flow and N losses). Explanatory variables that could be strongly influenced by one or more other explanatory variables were identified through using scatter plots and correlation statistics [p-values and Pearson correlation coefficient (r)]. These variables were excluded from the model to avoid multi-collinearity.

The criteria for determining best model from a set of potential models based on the adjusted coefficient of multiple determination (R_{adj}^2) . R_{adj}^2 differs from the commonly used coefficient of determination; R^2 , which typically increases as the number of explanatory variables in the regression model increases. R_{adj}^2 compares models that have different numbers of explanatory variables by penalizing models that have additional coefficients (Helsel and Hirsch, 1995) and thereby provides a stronger indicator of the strength of the model.

280 Although the GlmSelect regression, particularly the "Stepwise" selection method, evaluates the contribution of each 281 variable added to or removed from a model, an explanatory variable statistical significance could be exaggerated due 282 to the inclusion of huge number of records used to build the model. Therefore, and through an iterative processes, 283 variables that were identified as significant; i.e., assigned a high t-static, but had no substantial impact on reducing 284 the root mean squared error (RMSE), or on increasing R^2_{adj} were excluded from the analysis. Since the GlmSelect 285 procedure does not support regression diagnostics, the developed models were further investigated by assessing the 286 relation between simulated values predicted by DRAINMOD-based models with their correspondence estimated by 287 the regression models using a simple linear regression; i.e., PROC REG. Residuals plots and Cook's distance 288 (Cook's D) statistic were used to determine outliers or highly influential records.

289

Category	Explanatory variable	Symbol	Numerical	Categorical	Descriptive statics ¹		Variable Levels ²			
					minimum	maximum	mean	level 1	level 2	level 3
Climate	Annual precipitation, cm	Rain	•		100	160	129.6			
Soil	Silt content, %	Silt	•		5.2	32	18			
	Clay content, %	Clay	•		5	43	20			
	Sand content, %	Sand	•		25	87	62			
	Organic Carbon, %	OC	•		0.4	6	1.3			
	Saturated hydraulic conductivity, cm/hr	Ksat	•							
Sub-surface drainage	Drain depth, cm	D-depth	•		80	150	115			
	Drain spacing, m	Spacing	•		15	55	30			
Surface drainage	Surface drainage conditions	S-Storage		•				good	fair	poor
Crop management & yields	crop relative yield, %	Yield	•		40	100	85			
	crop cover ³	Crop		•				Crn-Wh	Wh-Sb	
	Fertilizer applied, Kg N/ha/yr	Fert	•		70	260	150			
Preceding year conditions	Climate	L-rain		•				dry	normal	wet
	crop production	L-Yield		•				high	medium	low

291 Table 2. Candidate explanatory variables for the proposed regression models.

²⁹² ¹ Descriptive statics for numerical variables only.

²Different levels for categorical variables only.

³ Used within a corn-wheat-soybean crop management scenario.

295 4. Results and Discussion

296 The final product of the current study is a set of regression equations or models designed to estimate annual drainage

flow and corresponding annual NO₃-N losses under four tiers of management scenarios: **Tier 1**: A continuous corn

298 cropping system operated under conventional drainage (FDCC), Tier 2: A continuous corn cropping system

- 299 operated under controlled drainage or drainage water management (DWMCC), Tier 3: A corn-wheat-soybean
- 300 cropping system operated under conventional drainage (FDCWS), and Tier 4: A corn-wheat-soybean cropping
- 301 system operated under controlled drainage (DWMCWS).

302 In this section, we report the different regression models, the corresponding fit statistics, and an assessment of their 303 predictive power using the data withheld for model testing. Also, we present an example application that compares 304 the predictions of the regression model to DRAINMOD predictions for a specific site conditions. It should be noted 305 that the regression models were built allowing first degree interaction among different explanatory variables. 306 Allowing a higher degree of interaction did increase model complexity with no additional performance 307 improvements.

308 **4.1 Regression mode**

8 4.1 Regression models for annual drainage flow prediction

309 The selected form of the GLM models developed to estimate annual drainage flow included six numerical variables 310 and two categorical variables. The numerical variables included sand, silt, and clay contents, annual rainfall, and 311 drain depth and spacing. The categorical variables are the surface drainage condition and crop cover in a corn-312 wheat-soybean rotation tiers. Although DRAINMOD predictions of drainage flow have been found to be sensitive 313 to changes in the soil lateral saturated hydraulic conductivity (K_{sat}) (Hann and Skaggs, 2003; Wang et al., 2006b), 314 the values of K_{sat} were found to be highly correlated with soil texture parameters; sand (r = 0.67), silt (r = -0.49), and 315 clay (r = -0.63). This finding is expected as numerous studies have shown the dependency of K_{sat} on soil texture (e.g. 316 Saxton et al., 1986; Tietje and Hennings, 1996; Rawls et al., 1998; Kosugi, 1999). Therefore, Ksat were not included 317 in the regression models. Predicted annual drainage flow was not significantly affected by parameters related to crop 318 management, yields, as well as, parameters describing preceding climatic conditions. Annual precipitation was the 319 most significant parameter controlling the variation in drainage flow with an r = 0.52. These results showing the

sensitivity of drainage flow to different explanatory variables agreed with previous experimental findings (Youssef
et al., 2006; Kladivko et al, 2005; Wang et al., 2006a; Jaynes and Colvin, 2006).

A preliminary assessment of the regression models' performance showed that their estimation of annual drainage flows in either extreme dry or extreme wet years were associated with very high residuals and Cook's D values. As a result, records with the most extreme 5% of the rainfall distribution (Rain < 99 cm or Rain > 160 cm) were eliminated from all data subsets and the regression process was repeated. Therefore, the regression equations may not provide accurate estimates of the annual drainage flow if to be applied on years with extremely high or low annual precipitation.

328 The response variable Y_H; annual drainage flow (cm), can be estimated from the following equation:

- 329 $Y_{H} = \beta_{1} X_{1} + \beta_{2} X_{2} + \beta_{3} X_{3} + \dots + \beta n X n +$
- $\beta_{L1} \, X_{L1} + \ \beta_{L2} \, X_{L2} + \ldots + \beta_{Lm} \, X_{Lm} \qquad (Eq. \, 1)$

where m and n are the number of equation terms without and with a categorical variable, respectively. β_i is the regression coefficient corresponds to ith equation term (X) representing a numerical variable or an interaction between two numerical variables for i = 1, 2, 3,...n. β_{Lj} is the regression coefficient corresponds to jth equation term (X_L) representing a categorical variable, or an interaction between a categorical and numerical variable, or an interaction between two categorical variables.

All the equation terms and corresponding parameter estimates for different management tiers are listed in Table S1 and Table S2. In most cases the selected explanatory variables can be easily defined with no need for intensive or expensive field measurements. This was the goal of the study, to develop a simple tool that can be used with easily accessible data.

340 The four tiers' regression models developed to estimate annual drainage flow achieved an R^2_{adj} higher than 0.88, and

341 a root mean squared error (RMSE) less than 10.5 cm (Table S1 and Table S2). These numbers indicate a high

- 342 correlation between simulated and estimated annual drainage flow which is mainly attributed to simultaneously
- 343 assessing the effects of various explanatory variables on the response variable through the utilization of the
- 344 GlmSelect procedure and through a factorial design structure of the modeled data (Pedhazur, 1997). The factorial

Page | 23

345 design considers a multi-dimensional space that combines all possible combinations of several factors, each with 346 several numerical or categorical levels. However, caution must be used in applying the models for years with 347 extremely low or high annual rainfall.

348 The different terms of the developed equations (Table S1 and S2) emphasized that joint effects between parameters

349 generally govern the variation in the response variable (Y_H) more than what the main effect of each explanatory

350 variable. This could be attributed to the strong inherent interaction among different environmental and management

design variables in their contribution to controlling the system performance.

352 Figures 3 illustrates comparison between DRAINMOD simulated annual drainage flow and their corresponding

353 estimated by the four-tiers regression models utilizing the dataset withheld for model testing. Both simulated and

estimated annual drainage values were highly correlated with a R_{adj}^2 equals to 0.93, 0.92, 0.94, and 0.91 for tier 1,

tier 2, tier 3, and tier 4 regression models, respectively. These values are as good as those estimated for the training

dataset indicating an unbiased regression model. The random distribution of the residual in the diagnostic residual

357 plots, as well as the proximity of the quantile plots to straight lines (Figure 3) indicate that regression model

assumptions including residuals normality and homoscedasticity (equal variance) were preserved.

359

360

362

363

- 364
- 365
- 366
- 367 368

- 378 Figure 3. Correlation between simulated and estimated annual drainage flow (cm/year), scatter residual plots,
- and residual-quantile plots using the data withheld for model testing for a) FDCC, b) DWMCC, c) FDCWS,
- 380 and d) DWMCWS management scenarios.

381 4.2 Regression models for predicting annual NO₃-N losses

382

383 Section 4.1 for drainage outflows. We started building the model by implementing all categorical and numerical 384 variables that showed significant effect on estimating annual drainage flows and then added parameters related to 385 crop management. However, the large number of explanatory variables caused the resulting models to be very 386 complicated. Several modeling and experimental studies documented that rates of NO₃-N leaching losses are highly 387 correlated with rates of drainage flow (Kladivko et al., 2004; Youssef et al., 2006; Ale et al., 2009; Luo et al., 2010; 388 Skaggs et al., 2012a; Negm et al., 2014). Thus, predicted annual drainage flow was used as an explanatory variable 389 to estimate annual NO₃-N loss to simplify the equation. Using a simple correlation statement; i.e. PROC CORR, 390 annual drainage flow rate was the most correlated parameter with annual nitrate losses (r > 0.5).

The strategy used to develop regression models for estimating annual NO₃-N losses was similar to that described in

391 The final regression models to estimate annual NO₃-N losses included four numerical variables and two categorical 392 variables. The numerical variables included annual drainage flow, soil organic carbon, relative yield, and fertilizer 393 application rate. Selected categorical variables included preceding year crop production level and climate conditions, 394 in addition to crop cover in corn-wheat-soybean rotation settings.

The response variable Y_N ; annual NO₃-N losses (Kg N ha⁻¹), can be estimated from the regression model (Equation 1) where all the equation terms and corresponding parameter estimates for different management tiers are listed in Table S3 and Table S4. Annual drainage flow may be estimated as described in section 4.1. An alternative is to run DRAINMOD model directly to compute annual drainage flow for a local site conditions of interest. Although this alternative is expected to yield more accurate estimation of drainage flow, it does require modelling experience and data availability.

401 The developed regression models for estimating annual NO₃-N losses resulted in an adjusted R^2 of 0.88 or higher for

402 all management tiers indicating high correlation between DRAINMOD-NII simulated and estimated annual NO₃-N

403 losses. Incidences at which the estimated annual drainage losses were poorly correlated with DRAINMOD-NII

404 simulated values (high value of the residual) were scattered between the upper and lower bounds of the response

405 variable. Such differences could be attributed to DRAINMOD models capability of simulating dynamic

406 environmental conditions and their interaction with management practices. The regression models are not capable of

Page | 28

- 407 considering such interactions. For example, the intensity of rainfall events and their timing relative to the growing
 408 season and fertilizer application dates in a given year affect N concentration in drainage waters, and, in turn, annual
 409 N load. Rainfall at a different intensity and date with respect to fertilization may result in a very different annual N
 410 loss, even though the annual rainfall and fertilization are similar.
- 411 Figure 4 illustrates the diagnostic plots for assessing the ability of the regression models to estimate annual N loads
- 412 in comparison to DRAINMOD-NII simulated values for the four tiers of management scenarios. The achieved R^2_{adj}
- 413 equaled to 0.9, 0.88, 0.92, and 0.92 for tier 1, tier 2, tier 3, and tier 4 regression models, respectively. This indicates
- 414 consistently good performance of the developed regression equations in estimating N drainage losses under both
- 415 conventional and controlled drainage. This performance was achieved despite lumping a large number of interacting
- 416 complex hydrological and biogeochemical processes. This simple model provides a calculation tool for estimating
- 417 the effect of implementing DWM on N loads at the field outlet.

Figure 4. Correlation between simulated and estimated annual drainage flow (cm/year), scatter residual plots, and
residual-quantile plots using the data withheld for model testing for a) FDCC, b) DWMCC, c) FDCWS, and d)
DWMCWS management scenarios.

443 **4.3 Case Study:**

In the this section, the regression models' estimation of drainage flow and NO₃-N leaching losses were compared, on a year by year basis, to the predictions of DRAINMOD and DRAINMOD-NII, calibrated for a drainage water management site located at the Tidewater Research Station (TRS) near the town of Plymouth, in the North Carolina lower coastal plain (Skaggs et al., 2012b, Youssef et al., 2006). Throughout this example application, we refer to drainage flow and NO₃-N losses predicted by DRAINMOD and DRAINMOD-NII as "simulated", while the values calculated by the regression models are referred to as "estimated".

450

4.3.1 Description of the Agricultural System

451 The soil on the nearly flat, 13.8-ha site is Portsmouth sandy loam, which is very poorly drained under natural conditions. 452 The surface soil horizon characterized by a relatively high organic carbon (3.5%). The subsurface drain pipes were spaced 453 at 23 m and placed at 118 cm below the soil surface. The site is planted to a corn-wheat-soybean rotation; however, a 454 continuous corn scenario has also been proposed for complete demonstration and comparison purposes. A 25-year period 455 (1976-2000) of measured weather data (daily temperatures and precipitation records) was utilized for this example 456 application. Table 3 summarizes variables that describe site characteristics required by the regression models. Detailed 457 description of DRAINMOD and DRAINMOD-NII parameterization is described by Youssef et al. (2006) and Skaggs et al. 458 (2012b).

460 461	Variable	Value	_
462	Drain depth, m	1.18	-
463	Drain spacing, m	23.0	
464	Depressional Storage, cm ¹	1.25	
-0-	Sand content, %	75.5	
465	Silt content, %	14.0	
466	Clay content, %	10.5	
	OC, %	3.5	
467	Fertilization, Kg N ha ⁻¹		
468	Corn	175	
460	Wheat	120	
409	Soybean	NA	
470			

459 Table 3. Summary of soil property and site parameter inputs for the TRS site.

¹ The 1.25 cm of depressional storage is equivalent to Level 2 of surface storage in the regression equation.

² In a corn-wheat-soybean rotation, annual applied fertilizer for a CW year depended on the total amount of fertilizer applied for corn plus the starter amount applied for wheat, and for a WS year, the annual fertilizer applied equaled to the sidedressed application for wheat.

475 **4.3.2** An

4.3.2 Annual Drainage Flow

476 Annual drainage flow simulated by DRAINMOD and estimated by the regression models are visually compared in Figure 477 5. For the FDCC and DWMCC, the Percent Difference (PD) between estimated and simulated annual drainage flow was 478 within $\pm 15\%$ in over 56% of the years, and within $\pm 25\%$ in over 82% of the years. Over the 25-year period, the PD 479 between estimated and simulated average annual drainage flow was -2.3% for the FDCC (estimated = 39.8 ± 12.7 cm, 480 simulated = 40.8 ± 13.5 cm), and PD was 1.6% for the DWMCC (estimated = 32.2 ± 12.6 cm, simulated = 31.7 ± 10.6 cm). 481 Years when estimated drainage substantially differs from simulated values were mostly associated with years experienced 482 extreme climate conditions; years with extreme annual precipitation and/or years that has monthly precipitation patterns 483 that sharply deviated from long-term means. For example, in the extreme dry year of 1993 (annual precipitation = 100 cm) 484 estimated annual drainage was 42% and 47% less than their corresponding values simulated by DRAINMOD for the 485 FDCC and DWMCC, respectively. In 1999 when annual perception were similar to long-term averages, estimated and 486 simulated annual drainage flows respectively were 42.6 and 34.3 cm (PD = +24%) for the FDCC, and were 35 and 26.9 cm 487 (PD = +30%) for the DWMCC. These differences could be mainly attributed to the significant divergence of seasonal 488 rainfall from normal conditions. The period of February till August 1999 which received 56.5 cm of rainfall and reported 489 as the third driest period in a 49-year record, was followed by a series of hurricanes and tropical storms with a total of 55.5 490 cm of rainfall during September and October 1999. This was the wettest period in a 49-year historical weather record 491 (1951 -1999) (Shelby et al., 2006). Under such conditions, DRAINMOD simulated near zero drainage in the prolonged dry 492 period followed with large drainage volumes associated with excessive surface runoff in the short but extremely wet 493 period. However, estimated drainage values by the regression model were close to long term estimated drainage values 494 since it is based on annual rainfall amounts and does not consider the seasonal extremes.

495 For the FDCWS and DWMCWS, PD between estimated and simulated annual drainage flow was within ±15% in over

496 52% of the years, and within $\pm 25\%$ in over 76% of the years. Estimated and simulated average annual drainage over the

497 case study period were 40.8 and 38.5 cm for the FDCWS (PD = 5.1%); 34.1 and 31.3 for the DWMCWS (PD = 9.1%).

498 Similar to the continuous corn management scenarios, seasonal distribution of rainfall events was a critical factor

499 impacting the difference between estimated and simulated annual drainage flow in some of the years. For 1999, estimated

Page | 32

500 annual drainage flow were 36% and 19% higher than the simulated values respectively for FDCWS and DWMCWS.

501 Under the extreme dry conditions of 1993, estimated annual drainage flow were 27.7% and 30.7% lower than the simulated

502 values for the FDCWS and DWMCWS, respectively. Another exceptionally dry year was 1997, which was similar to 1993

503 in terms of annual rainfall and crop cover (corn-wheat). The regression model estimated similar annual drainage flows for

504 the two years. DRAINMOD simulated lower drainage flow in 1997 than in 1993. In 1997, around 50% of annual rainfall

- 505 occurred during the hot growing season when evapotranspiration demands normally exceed drainage rates. In contrast
- 506 70% of the annual rainfall in 1993 occurred during the fallow period resulting in greater drainage volumes. Such
- 507 differences cannot be predicted by the simple regression equations. Yet, overall, they do a very acceptable job in
- 508 predicting annual outflows.

509 A fair correlation between estimated and simulated percent reduction in annual drainage due to DWM can be inferred from

510 the year-by-year comparison illustrated in Figure 6 for CC and CWS. The 5-year moving average curves reduced the

- 511 effects of temporal variations and identified no over- or under-estimation trends predicted by the regression models, in
- 512 comparison to annual flow reductions predicted by DRAINMOD.

513 Overall, the simple regression models showed comparable performance to DRAINMOD in estimating annual drainage 514 flow under different management and climate scenarios. They provide a simple, reliable method of estimating annual 515 drainage flow, which can be used to estimate annual NO₃-N losses as described in the following section. These equations 516 may also be useful in other water conservation and environmental management applications where estimates of annual 517 drainage outflows are needed.

- 518
- 519
- 520
- 521
- 522
- 523

Figure 5. Annual drainage flow as simulated by DRAINMOD (DRN) and estimated by the regression models (REG) for different management tiers. (Values between parentheses represent average annual drainage flow \pm standard deviation, all units are in cm).

Figure 6. Reduction in annual drainage flow (%) due to DWM as simulated by DRAINMOD (DRN) and estimated
by the regression models (REG) for continuous corn (CC) and corm-wheat-soybean (CWS) management tiers. Solid
line represents the 5-year moving average of reduction in annual drainage flow (%) as estimated by the regression

531 model (REG: 5-Yr Avg), and the dashed line represents the 5-year moving average of reduction in annual drainage

- flow (%) as simulated by the DRAINMOD (DRN: 5-Yr Avg).

- - -

543 Utilizing the estimated annual drainage flow discussed in section 4.3.2; annual NO₃-N losses were estimated for the
544 same management tiers considered in this example application. Figure 7 presents the annual NO₃-N losses estimated
545 by the regression models as compared to corresponding values simulated by DRAINMOD-NII for the FDCC,
546 DWMCC, FDCWS, and DWMCWS. The Percent Difference (PD) between estimated and simulated annual N losses
547 was within ±25% over 76%, 72%, 76%, and 56% of the 25 years for FDCC, DWMCC, FDCWS, and DWMCWS,

548 respectively.

Larger PD's occurred in some years for both rotations and drainage modes. As an example, in years 1982, 1983,

and 1989; estimated losses were noticeably lower than simulated values for the FDCC and DWMCC (Figure 7).

551 This could be mainly attributed to the timing of heavy rainfall events that coincided or shortly followed site

552 fertilization causing DRAINMOD-NII to simulate high N losses early in the growing season. In addition, estimated

drainage flows were lower than simulated values for 1982 and 1983. In the exceptional wet year of 1989 (annual

554 precipitation = 176 cm) heavy rainfall events coincided with or closely followed days when fertilizer was applied.

555 DRAINMOD-NII simulated excessive NO₃-N losses (30 Kg N/ha for FDCC and 23 Kg N/ha for DWMCC) during

the very wet month of March as nutrient residues turned over the preceding dry year of 1988 (annual precipitation =

557 103 cm). For the CWS scenarios, estimated and simulated annual NO₃-N losses for 1989 were in close agreement. In

this year (1989), the field was planted to corn following soybean, which received no fertilization in 1988.

559 Therefore, nutrient residuals carried over to 1989 was not as significant as in a CC scenario. Again, the timing of

560 rainfall events relative to nutrient management, growing season and crop cover dramatically affects DRAINMOD-

561 NII simulations. The regression models do not consider such factors, resulting in the discrepancies in N losses, and

the effect of DWM on N losses predicted by the two approaches.

563 Average annual NO₃-N losses over the 25 years estimated by the regression models agreed well with DRAINMOD-

564 NII predictions for the FDCC (estimated = 48.8 ± 8.5 Kg N/ha; simulated = 49.8 ± 18.5 Kg N/ha), and for the

565 DWMCC (estimated = 42.5 ± 10.4 Kg N/ha; simulated = 41.2 ± 14.4 Kg N/ha). Similarly, estimated average annual

566 NO₃-N losses were in close agreement with simulated values for the FDCWS (estimated = 58.0 ± 13.0 Kg N/ha;

567 simulated = 56.5 ± 21.8 Kg N/ha), and for the DWMCWS (estimated = 45.9 ± 16.0 Kg N/ha; simulated = 46.7 ± 16.0 Kg N/ha; simulated = 46.7 ± 10.0 Kg N/ha; simulated = 46.7 ± 10.0

568 18.2 Kg N/ha). The fact that the regression approach predicted results similar to the long-term annual averages

569 predicted by DRAINMOD-NII is expected since a regression model usually performs better as an estimator of

570 normal conditions, than for other conditions that occur less frequently.

571 The potential application of these regression models in N trading markets was the main motive for developing the

572 current regression model as a tool to estimate DWM-induced reductions in N losses. Figure 8 illustrates annual

573 reductions due to DWM for CC and CWS scenarios as predicted by the regression approach versus DRAINMOD-

574 NII simulations. Average annual reduction in NO3-N losses due to DWM as estimated by the regression model for

575 the CC scenario was 6.3 Kg N/ha versus 8.6 Kg N/ha predicted by DRAINMOD-NII. For the CWS, estimated

576 annual reductions averaged at 6.6 Kg N/ha versus a simulated value of 7.2 Kg N/ha.

577 On a year-by-year basis, estimated reductions did not agree well with DRAINMOD-NII predictions in many of the 578 years (Figure 8). For CC, noticeable difference between estimated and simulated reductions was in years with 579 extreme dry growing seasons (i.e.; 1981, 1986, and 1997) associated with low crop yields. For the normal-to-wet 580 years followed these dry years (i.e.; 1982, 1987, and 1998), the regression model tends to estimate lower N losses 581 reductions compared to that simulated by DRAINMOD-NII. Estimated reductions in 1979 and 1995 didn't agree 582 with simulated values. These years experienced very wet growing seasons causing significant crop yield reductions 583 (as simulated by DRAINMOD), especially under the controlled drainage mode that caused additional loss to crop 584 yields due to increased wet stresses. For the CWS, discrepancies between estimation of DWM-caused reductions are 585 noticeable in several years. This was especially the case in the first 6 years of simulation when the regression model 586 estimation of annual NO3-N losses didn't agree well with DRAINMOD-NII simulated values under the controlled 587 drainage mode.

There was less variability when the comparison is based on the 5-year moving average of the predicted annual reductions of NO₃-N losses (Figure 8), as overestimation in some years was counterbalanced by underestimation in other years within the 5-year period. For CC the effect of DWM on the 5-year moving average of N losses as estimated by the regression equations was within 0.0 to 3.0 Kg N/ha of that predicted by DRAINMOD NII. For the CWS cropping system the absolute differences ranged between 0.0 to 9.0 Kg N/ha, and between 0.0 to 3.0 Kg N/ha if the first 5 years of simulation were excluded from the analysis.

598 Figure 7. Annual NO3-N losses as simulated by DRAINMOD (DRN) and estimated by the regression models

599 (REG) for the different management tiers. (Values between parentheses represent average annual drainage

600 flow ± standard deviation, all units are in Kg N/ha).

Figure 8. DWM-caused reductions in annual N0₃-N losses (Kg N ha⁻¹) as simulated by DRAINMOD (DRN)
and estimated by the regression models (REG) for continuous corn (CC) and corm-wheat-soybean (CWS)
management tiers. Solid line represents the 5-year moving average of reduction in annual N-losses (Kg N ha⁻¹)
as estimated by the regression model (REG: 5-Yr Avg), and the dashed line represents the 5-year moving
average of reduction in annual N-losses (Kg N ha⁻¹) as simulated by the DRAINMOD (DRN: 5-Yr Avg).

617

618 5 Summary and Conclusion

619 This article discusses the development of a simple tool suitable for a water quality credit trading system that 620 involves the use of DWM in Eastern North Carolina. In its basic form, the tool is presented by a set of regression 621 equations tracking DWM caused reductions of drainage flows and N mass losses as a function of easy-to-define 622 variables describing site-specific environmental conditions and management practices. DRAINMOD and 623 DRAINMOD-NII were used to conduct long-term simulations of annual drainage flow and NO3-N losses. Results 624 of the simulations were used to build the regression equations.

625 Simulations comprised numerous scenarios allowing variations in soil type, weather conditions, drainage design,

626 and cultural management practices to represent the many scenarios possible in eastern North Carolina. To

627 accomplish this intensive simulation exercise, efforts were exerted towards data collection and input file preparation,

628 in addition to integrating the DRAINMOD-based models through a batch mode. Regression analysis was performed

on the simulated data to develop equations designed to estimate annual drainage rates under four tiers of

630 management scenarios: a continues corn cropping system operated under conventional drainage (FDCC), a

631 continues corn cropping system operated under controlled drainage (DWMCC), a corn-wheat-soybean cropping

632 system operated under conventional drainage (FDCWS), and **a** corn-wheat-soybean cropping system operated under

633 controlled drainage. Similarly, a set of four regression equations developed and assigned to estimate annual NO3-N

634 leaching losses. The estimations of annual drainage flow and NO₃-N losses by the regression model correlated well

635 with the corresponding DRAINMOD-based simulations ($R^2_{adj} \ge 0.88$).

The regression tool was used to estimate annual DWM-induced reductions for 25 years of historical weather data for an experimental site located in Plymouth eastern North Carolina. In comparison to DRAINMOD and DRAINMOD-NII, previously calibrated and validated for this site, the regression models performed well in estimating most of the year-to-year variation in drainage rates and nitrate losses. Exceptions occurred for years with extreme weather conditions or high variations in inter-annual climate conditions; however, the comparison based on a 5-year moving averages illustrated that both methods yielded similar outcomes.

642 In conclusion, this regression approach provides producers, local and federal agencies with an easy-to-use

643 alternative to the burdensome use of process based models to facilitate the assessment of DWM under different site

644 conditions exist in eastern North Carolina. Potential errors with the method can occur when inter-annual variations

645 in rainfall are high which can lead to inaccurate estimations of annual N losses for individual years. To compensate 646 for these errors, the trade of N credits could be based on multiple-year contract. Estimates of N losses average out 647 over five year periods. Although the primary intent of building these regression models was to facilitate the 648 quantifications of N credits, the results presented herein introduce that the tool can be used with different water 649 management applications. Next steps for facilitating wider use of these methods include development of regression 650 equations for other areas where drained agriculture is used such as the Midwest US. Development of a user-friendly 651 interface, web-based tools, and educational program to teach the method will also make the method more acceptable 652 for use in a nutrient credit trading system.

653 Acknowledgment

- This study was supported by a conservation innovation grant (CIG) awarded by the USDA-NRCS (Project # 69-
- 655 3A75-12-177). The authors would like to thank Mr. Brian Phillips and Mr. Chad Poole of the Department of
- Biological and Agricultural Engineering, North Carolina State University for providing DRAINMOD weather data
- and soil properties.
- 658
- 659 Refrences
- Ale, S., Bowling, L.C., Brouder, S.M., Frankenberger, J.R., Youssef, M.A., 2009. Simu-lated effect of drainage
 water management operational strategy on hydrologyand crop yield for Drummer soil in the Midwestern
 United States. Agric. WaterManage. 96, 653–665.
- Ale, S., Bowling, L.C., Youssef, M.A., Brouder, S.M., 2012. Evaluation of simulatedstrategies for reducing nitrate–
 nitrogen losses through subsurface drainage sys-tems. J. Environ. Qual. 41 (1), 217–228.
- Alexander, R. B., Smith, R. A., and Schwarz, G. E., 2008. Differences in phosphorus and nitrogen delivery to the
 Gulf of Mexico from the Mississippi River basin. Environ. Sci. Technol., 42, 822–830.
- Ayars, J.E., Christen, E.W., Hornbuckle, J.W., 2006. Controlled drainage for improved water management in and
 regions irrigated agriculture. Agricultural Water Management 86, 128–139.
- Betchold, I., Kohne, S., Youssef, M.A., Lennartz, B., Skaggs, R.W., 2007. Simulatingnitrogen leaching and turnover
 in a subsurface-drained grassland receiving ani-mal manure in Northern Germany using DRAINMOD-NII.
 Agric. Water Manage.93, 30–44.

- 672 Corrales, J., Naja, G.M., Miralles-Wilhelm, F., Bhat, M.G., 2013. Water quality trading programs towards solving
 673 environmental pollution problems. Irrig. Drain. 62 (Suppl. 2), 72e92
- 674 Corrales, J., Naja, G.M., Bhat, M.G., Wilhelm, F.M., 2014. Modeling a phosphorus credit trading program in an
 675 agricultural watershed. J. Environ. Manag. 143, 162-172
- 676 Cox, J.W., McFarlane, D.J., Skaggs, R.W., 1994. Field evaluation of DRAINMOD forpredicting water-logging
 677 intensity and drain performance in South-WesternAustralia. Aust. J. Soil Res. 32, 653–671.
- David, M.B., Del Grosso, S.J., Hu, X., Marshall, E.P., McIsaac, G.F., Parton, W.J., Tonitto, C., Youssef, M.A., 2009.
 Modeling denitrification in a tile-drained, corn and soy-bean agroecosystem of Illinois, USA. Biogeochemistry
 93, 7–30.
- 681 Delgado, J.A., M.J. Shaffer, H. Lal, S. McKinney, C.M. Gross, and H. Cover. 2008. Assessment of nitrogen losses
 682 to the environment with a Nitrogen Trading Tool. Computers and Electronics in Agriculture 63:193-206.
- Dinnes, D. L., D. L. Karlen, D. B. Jaynes, T. C. Kaspar, J. L. Hatfield, T. S. Colvin, and C. A. Cambardella. 2002.
 Nitrogen management strategies to reduce nitrate leaching in tile drained Midwestern soils. Agron. J. 94: 153171.
- 686 Drury, C. F. Tan, C. S. Gaynor, J. D. Oloya, T. O. Welacky, T. W. 1996. Influence of Controlled Drainage-
- 687 Subirrigation on Surface and Tile Drainage Nitrate Loss. JEQ. 25:317–324.
- 688 doi:10.2134/jeq1996.00472425002500020016x
- Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R (2004). Least angle regression. Annals of Statistics, 32, 407–
 499.
- Evans, R.O., R.W. Skaggs, and R.E. Sneed. Stress day index models to predict corn and soybean relative yield under
 high water table conditions. Transactions of the ASAE 1991; 34(5):1997-2005.
- Evans, R. O., R. W. Skaggs, and J. W. Gilliam. 1995. Controlled versus conventional drainage effects on water
 quality. J. Irrig. and Drainage 121(4): 271-276.
- Fang, Q.X., R.W. Malone, L. Ma, D.B. Jaynes, K.R. Thorp, T.R. Green, and L.R. Ahuja. 2012. Modeling the effects
 of controlled drainage, N rate and weather on nitrate loss to subsurface drainage. Agricultural Water
 Management 103(January):150-161.
- Fausey, N. R. 2005. Drainage management for humid regions. Intl. Agric. Eng. J. 14(4): 209-214.

- Fouss, J.L., Skaggs, R.W., Rogers, J.S., 1987. Two-stage weir control for subsurfacedrainage in humid areas. Trans.
 ASAE 30 (6), 1713–1719.
- Ghane E, Fausey N, Shedekar V, Piepho H-P, Shang Y, Brown L. 2012. Crop yield evaluation under controlled
 drainage in Ohio, United States. J. Soil Water Conserv. 542 67:465-473.
- Gross, C., J.A. Delgado, S. McKinney, H. Lal, H. Cover, and M. Shaffer. 2008. Nitrogen Trading Tool to facilitate
 water quality credit trading. Journal of Soil and Water Conservation 63(2):44A-45A,
- 705 doi:10.2489/jswc.63.2.44A.
- Haan, P.K., Skaggs, R.W., 2003. Effect of parameter uncertainty on DRAINMOD predictions. I. Hydrology and
 yield. Trans. ASAE 46 (4), 1061–1067.
- Helsel, D.R., and Hirsch, R.M., 1995, Statistical methods in water resources: New York, Elsevier Science B.V., 529
 p.
- Jaynes, D.B. and D.E. James. 2007. "The Extent of Farm Drainage in the United States". USDA-ARS-NSTL, Ames,
 IA. Available online at:
- http://www.ars.usda.gov/SP2UserFiles/Place/36251500/TheExtentofFarmDrainageintheUnitedStates.pdf
 accessed 03-11-2010.
- Jaynes, D.B., Colvin, T.S., 2006. Corn yield and nitrate loss in subsurface drainagefrom midseason nitrogen
 fertilizer application. Agron. J. 98, 1479–1487.
- Jia, Z. and W. Luo. 2006. Modeling net water requirements for wetlands in semi-arid regions. Agricultural Water
 Management 81(3): 282-284.
- Kladivko, E. J., Frankenberger, J. R., Jaynes, D. B., Meek, D. W., Jenkinson, B. J., and Fausey, N. R. (2004).
 "Nitrate leaching to subsurface drains as affected by drain spacing and changes in crop production system." J.
 Environ. Qual., 33(5), 1803–1813.
- Kladivko, E. J., Willoughby, G. L., and Santin, J. B. (2005). "Corn growth and yield response to subsurface drain
 spacing on Clermont silt loam soil." Agron. J., 97(5), 1419–1428
- Kosugi, K. 1999. General model for unsaturated hydraulic conductivity for soils with lognormal pore-size
 distribution. Soil Sci. Soc. Am. J. 63:270–277.
- Luo, W., Sands, G.R., Youssef, M.A., Strock, J.S., Song, I., Canelon, D., 2010. Model-ing the impact of alternative
- 726 drainage practices in the Northern Corn Belt withDRAINMOD-NII. Agric. Water Manage. 97, 389–398.

- 727 Mitsch, W. J., J. W. Day, Jr., J. W. Gilliam, P. M. Groffman, D. L. Hey, G. W. Randall, and N. Wang. 2001.
- Reducing nitrogen loading to the Gulf of Mexico from the Mississippi river basin: Strategies to counter a
 persistent ecological problem. BioScience 51(5): 373-388.
- MCSS. 2010. The cooperative soil survey. University of Missouri, Columbia, MO. [Online]. Available:
 http://soils.missouri.edu
- Negm, L.M., et al., DRAINMOD–DSSAT model for simulating hydrology, soil carbon and nitrogen dynamics, and
 crop growth for drained crop land. Agric. Water Manage. (2014),
- 734 http://dx.doi.org/10.1016/j.agwat.2014.02.001
- Newburn, David A. and Richard T. Woodward, 2011. An Ex Post Evaluation of Ohio's Great Miami Water Quality
 Trading Program. Journal of the American Water Resources Association (JAWRA) 48(1): 156–169. DOI:
 10.1111/j.1752-1688.2011.00601.x

Parton, W.J., Scurlock, M.O., Ojima, D.S., Gilmanov, T.G., Scholes, R.J., Schimel, D.S., Kirchner, T., Menaut, J.C.,
Seastedt, T., Moya, E.G., Kamnalrut, A., Kinya-mario, J.I., 1993. Observations and modeling of biomass and
soil organic matterdynamics for the grassland biome worldwide. Global Biogeochem. Cycles 7,785–809.

Pavelis, G.A. 1987. Economic survey of farm drainage. In Farm drainage in the United States: History, status and
 prospects, ed. G.A. Pavelis, p 110-136. USDA Economic Research Service Miscellaneous Publication 1455.
 Washington, DC: US Government Printing Office.

Pedhazur, E.J, 1997. Multiple Regression in Behavioral Research, 3rd ed. New York: Holt, Rinehart and Winston
 Inc.

Petrolia, D. R., and P. H. Gowda. 2006. Missing the Boat: Midwest farm drainage and Gulf of Mexico hypoxia. Rev.
Agr. Econ. 28: 240-253.

Pitts, D. J., R. Cooke, and P. J. Terrio. 2004. Illinois drainage water management demonstration project. In Drainage
VIII: Proc. 8th Intl. Drainage Symposium, 25-38. R. Cooke, ed. St. Joseph, Mich.: ASAE.

Poole, C.A., Skaggs, R.W., Cheschier, G.M., Youssef, M.A., Crozier, C.R., 2013. Effects of drainage water
management on crop yields in North Carolina. J. Soil Water Conserv. 68, 429–437

Rawls, W., Gimenez, J.,D., and Grossman, R., 1998. Use of soil texture, bulk density, and slope of the water
retention curve to predict saturated hydraulic conductivity. Transactions of the ASAE 41(4), 983-988.

- Ryberg, K.R., 2007, Continuous water-quality monitoring and regression analysis to estimate constituent
 concentrations and loads in the Sheyenne River, North Dakota, 1980–2006: U.S. Geological Survey Scientific
 Investigations Report 2007–5153, 22 p.
- Saleh, A.R. 1994. Sediment loss prediction with DRAINMOD-CREAMS. Pertanika Journal Science and
 Technology 2(1):1-13.
- Saleh, A., O. Gallego, E. Osei, H. Lal, C. Gross, S. McKinney, and H. Cover. 2011. Nutrient Tracking Tool—A
 user-friendly tool for calculating nutrient reductions for water quality trading. Journal of Soil and Water

761 Conservation 66(6):400-410, doi:10.2489/jswc.66.6.400.

- Salazar, O., Wesström, I., Youssef, M.A., Skaggs, R.W., Joel, A., 2009. Evaluation of the DRAINMOD-NII model
 for predicting nitrogen losses in a loamy sand undercultivation in southeast Sweden. Agric. Water Manage. 96,
 267–281.
- Saxton, K.E., W.J. Rawls, J.S. Romberger, and R.I. Papendick. 1986. Estimating generalized soil-water
 characteristics from texture. Soil Sci. Soc. Am. J. 50:1031–1036.
- Schaap, M.G., Leij, F.J., van Genuchten, M.T., 2001. ROSETTA: a computer program for estimating soil hydraulic
 parameters with hierarchical pedotransfer functions. Journal of Hydrology 251(3-4), 163-176.
- Shelby, J.D., G.M. Chescheir, R.W. Skaggs, and D.M. Amatya. 2006. Hydrologic and water-quality response of
 forested and agricultural lands during the 1999 extreme weather conditions in eastern North Carolina. Trans.
 ASAE 48:2179–2188.
- Skaggs, R.W., 1978. A water management model for shallow water table soils. In:Tech. Rep. 134. University of
 North Carolina Water Resource Research Institute, Raleigh, NC.

774 Skaggs, R.W., 1982. Field evaluation of a water management simulation model. Trans. ASAE 25 (3), 666–674.

- Skaggs RW, Breve MA, Gilliam JW., 1994. Hydrologic and water quality impacts of agricultural drainage. Cri Rev
 Environ Sci Technol 24:1–32
- Skaggs, R.W., M.A. Youssef, and G.M. Chescheir. 2012a. A DRAINMOD-Based Method to estimate effects of
 drainage water management on annual nitrogen losses to surface water. Transactions of American Society of
 Agricultural and Biological Engineers 55(3):799-808
- Skaggs, R.W., Youssef, M.A., Chescheir, G.M., 2012b. DRAINMOD: model use, calibra-tion, and validation.
 Trans. ASABE 55 (4), 1509–1522.

782 Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267–288.

- Tibshirani, R, 2011. Regression shrinkage and selection via the lasso: a retrospective, J. R. Statist. Soc. B, vol. 73,
 pp. 273–282.
- Tietje, O., and Hennings, V., 1996. Accuracy of the saturated hydraulic conductivity prediction by Pedotransfer
 functions compared to the variability within FAO textural classes. Geoderma 69, 71–84.
- Thorp, K.R., Youssef, M.A., Jaynes, D.B., Malone, R.W., Ma, L., 2009. DRAINMOD-N II:Evaluated for an
 agricultural system in Iowa and compared to RZWQMDSSAT.Trans. ASABE 52 (5), 1557–1573.
- 789 USDA 2010. Field Crops: Usual Planting and Harvesting Dates. Agricultural Handbook No. 628. Washington, D.C.:
 790 USDA

US Environmental Protection Agency (USEPA) (2007), WQT Toolkit for Permit Writers. Office of Wastewater
 Management, Water Permits Division. EPA 833-R-07-004.

Wang, X., Mosley, C.T., Frankenberger, J.R., Kladivko, E.J., 2006a. Subsurface drain flowand crop yield
 predictions for different drain spacings using DRAINMOD. Agric.Water Manage. 79, 113–136.

Wang, X., Frankenberger, J. R., and Kladivko, E. J. (2006b). "Uncertainties in DRAINMOD predictions of
subsurface drain flow for an Indiana silt loam using GLUE methodology." Hydrol. Process, 20(14), 3069–
3084.

- Wesström Ingrid, Ingmar Messing, Harry Linnér, Jan Lindström, Controlled drainage effects on drain outflow
 and water quality, Agricultural Water Management, Volume 47, Issue 2, March 2001, Pages 85-100, ISSN
 0378-3774, <u>http://dx.doi.org/10.1016/S0378-3774(00)00104-9</u>.
- Workman, S.R., Skaggs, R.W., 1989. Comparison of DRAINMOD and SWATREN basedon field data. Trans.
 ASAE 32 (6), 1933–1938.
- Youssef, M.A., Skaggs, R.W., Chescheir, G.M., Gilliam, J.W., 2005. The nitrogen simu-lation model,
 DRAINMOD-NII. Trans. ASAE 48 (2), 611–625.
- Youssef, M.A., Skaggs, R.W., Chescheir, G.M., Gilliam, J.W., 2006. Field evaluation of a model for predicting
 nitrogen losses from drained lands. J. Environ. Qual. 35,2026–2042.

- 807 Zebarth, B.J., Drury, C.F., Tremblay, N., Cambouris, A.N., 2009. Opportunities for improved fertilizer nitrogen
- 808 management in production of arable crops in eastern Canada: a review. Canadian Journal of Soil Science 89,
- 809 11-132.